Ângulo é a reunião de duas semi-retas de mesma origem e não-colineares.
3) 0bserve os pontos assinalados e responda:
80° - 42° 30´ =
1º Exemplo
ÂNGULOS CONGRUENTES
a) Quanto mede o ângulo MÔA?
a) O menor ângulo formado pelos pnteiros de um relógio às 3 horas é um ângulo agudo, reto ou obtuso?
Na figura
Indicação do ângulo: AÔB, ou BÔA ou simplismente Ô
PONTOS INTERNOS E PONTOS EXTERNOS A UM ÂNGULO
Seja o ângulo AÔB
MEDIDA DE UM ÂNGULO
Um ângulo pode ser medido através de um instrumento chamado transferidor e que tem o grau como unidade. O ângulo AÔB da figura mede 40 graus.
Indicação:
m (AÔB) = 40º
A unidade grau tem dois submúltiplos: minuto e segundo
1 grau tem 60 minutos (indicação: 1 = 60º)
1 minuto tem 60 segundos ( indicação 1´ = 60"
Simbolicamente:
== Um ângulo de 25 graus e 40 minutos é indicado por 25º 40´.
== Um ângulo de 12 graus, 20 minutos e 45 segundos é indicado por 12º 20´45"
EXERCICIOS
1) Dê a indicação, o vértice e os lados dos ângulos:
2) Em cada uma das figuras abaixo há três ângulos. Quais são esses ângulos?
3) 0bserve os pontos assinalados e responda:
a) Quais pontos estão no interior do ângulo?
b) Quais ponmtos estão no ixterior do ângulo?
c) Quais pontos pertencem aos lados do ângulo?
4) Escreva as medidas em graus dos ângulos indicados pelo transferidor.
a) m (AÔB)
b) m (AÔC)
c) m (AÔD)
d) m (AÔE)
e) m (AÔF)
f) m (AÔG)
5) Escreva simbolicamente:
a) 30 graus
b) 10 graus e 25 minutos
c) 42 graus e 54 minutos
d) 15 graus, 20 minutos e 40 segundos
e) 54 graus, 38 m inutos e 12 segundos
6) Responda:
a) Um grau é igual a quantos minutos?
b) Um minuto é igual a quantos segundos?
c) Um grau é igual a quantos segundos?
7) Tranforme :
a) 1º em minutos
b) 2º em minutos
c) 3º em minutos
d) 4º em minutos
e) 5º em minutos
f) 1´ em segundos
g) 2´ em segundos
h) 3´ em segundos
i) 4´ em segundos
j) 5´ em segundos
8) Transforme em minutos, observando o exemplo resolvido:
resolvido = 2º 17´ = 2 x 60´ + 17´ = 137´
a) 5º 7´ =
b) 3º 20´ =
c) 10º 35´ =
d) 12º 18´ =
e) 3º 45´ =
f) 5º 54´ =
g) 7º 12´ =
h) 9º 36´ =
9) Transforme:
120´= 120 : 60 = 2º ===== resolvidos ==== 120" = 120" : 60 = 2´
a) 180´em graus =
b) 240´em graus =
c) 300´ em graus =
d) 360´em graus =
e) 180" em minutos =
f) 240" em minutos =
g) 300" em minutos =
h) 360" em minutos =
10) Transforme em graus e minutos:
Resolvido: 75´= 1º 15´ (obs divida os minutos por 60 para obter os graus. O resto , se existir, serão os minutos.)
a) 90´ =
b) 95´=
c) 130´ =
d) 150´ =
e) 385´ =
f) 512´=
g) 867´=
h) 1000´=
11) Transforme em minutos e seguntos:
a) 97" =
b) 130" =
c) 150" =
d) 162" =
e) 185" =
f) 254" =
12) Copie e complete:
a) 40° = 39°_______
b) 70° = 69 _______
c) 84° = 83° ______
d) 90° = 89° _______
e) 150° = 149° ________
f) 180° = 179° _______
13) Escreva as medidas na forma mais simples:
Resolvildo: 27° 60´ = 28°
a) 29º 60´= (R: 30°)
b) 34° 60´= (R: 35°)
c) 72° 60´= (R: 73°)
d) 99° 60´= (R: 100°)
e) 54° 60´ = (R: 55°)
f) 108° 60´= (R: 109°)
14) Escreva as medidas na forma mais simples:
Resolvido: 39° 75´ = 40° 15´
a) 30° 80´ = (R: 31° 20´)
b) 45° 90´= (R : 46° 30´)
c) 57° 100´= (R: 58° 40´)
d) 73° 110´= (R: 74° 50´)
e) 20° 120´= (R: 22°)
f) 25° 150´= (R: 27° 30´)
g) 42° 160´= (R: 44° 40´)
h) 78° 170´= (R: 80° 50´)
OPERAÇÕES COM MEDIDAS DE ÂNGULOS
ADIÇÃO
1) Exemplo
17° 15´ 10" + 30° 20´40"
17° 15´ 10"
30° 20´ 40"
-----------
47° 35´ 50"
2) Exemplo
13° 40´ + 30° 45´
13° 40´
30° 45´--------
43° 85´ (simplificando) 44° 25´
EXERCÍCIOS
1) Calcule as somas:
a) 49° + 65° = (R:
b) 12° 25´ + 40° 13´ = (R:
c) 28° 12´ + 5 2° 40´ = (R:
d) 58° + 17° 19´ = (R:
e) 41° 58´ + 16° = (R:
f) 25° 40´ + 16° 50´ = (R:
g) 23° 35´ + 12° 45´ = (R:
h) 21° 15´40" + 7° 12´5" = (R:
i) 35° 10´50" + 10° 25´20" = (R:
j) 31° 45´50" + 13° 20´40" = (R:
l) 3° 24´9" + 37° 11´33" = (R:
m) 35° 35´2" + 22° 24´58" = (R:
SUBTRAÇÃO
1) Exemplo
58° 40´ - 17° 10´ =
58° 40´
17° 10´
-------
41° 30´
2) Exemplo
80°
42° 30´
-------
37° 30´
EXERCÍCIOS
1) Calcule as diferenças:
a) 42° - 17° = (R:
b) 172° - 93° = (R:
c) 48° 50´ - 27° 10´ = ( R:
d) 42° 35´ - 13° 15´ = (R:
e) 70° - 22° 30´ = (R:
f) 30° - 18° 10´= (R:
g) 90° - 54° 20´ (R:
h) 120° - 50°45´ =(R:
i) 52°30´ - 20°50´ = (R:
j) 39° 1´ - 10°15´ = (R:
MULTIPLICAÇÃO DE ÂNGULOS
1º) Exemplo
17°15´ x 2 =
17°15´
___x2--------
34°30´
2°) Exemplo
24° 20´ x 3 =
24°20´
____3
-------
72°60´ (simplificando) 73°
EXERCÍCIOS
1) Calcule os produtos:
a) 25°10´ x 3 = (R:
b) 44°20´ x 2 = ( R:
c) 35° 10´ x 4 = (R:
d) 16°20´ x 3 = (R:
e) 28°30´ x 2 = (R:
f) 12°40´ x 3 = (R:
g) 15°30´ x 3 = (R:
h) 14° 20´ x 5 =(R:
DIVISÃO DE UM ÂNGULO POR UM NÚMERO
2º Exemplo
EXERCÍCIOS
1) Calcule os quocientes:
a) 48° 20´ : 4 = (R:
b) 45° 30´ : 3 = (R:
c) 75° 50´ : 5 = (R:
d) 55° : 2 = (R:
e) 90° : 4 = (R:
f) 22° 40´ : 5 = (R:
2) Calcule:
a) 2/5 de 45° = (R;
b) 5/7 de 84° = (R:
c) 3/4 de 48° 20´ (R:
d) 3/2 de 15° 20´ (R:
Dois ângulos são congruentes se as suas medidas são iguais.
Indicação AÔB = CÔD ( significa: AÔB é congruente a CÔD )
BISSETRIZ DE UM ÂNGULO
Bissetriz de um ângulo é a simi-reta com origem no vértice do ângulo e que o divide em dois ângulos congruentes.
EXERCÍCIOS
Responda:
R:
b) Quanto mede o ângulo NÔC?
R:
c) Quanto mede o ângulo BÔN?
R:
d) Quanto mede o ângulo MÔC?
R:
e) Quanto mede o ângulo AÔN?
R:
f) Quanto m,ede o ângulo MÔN?
R:
ÂNGULOS RETO, AGUDO E OBTUSO
Os ângulos recebem nomes especiais de acordo com suas medidas:
= Ângulo reto é aquele cuja medida é 90°.
= ângulo agudo é aquele cuja medida é menor de 90°
= ângulo obtuso é aquele cuja medida é maior que 90°
RETAS PERPENDICULARES
Quanto duas retas se interceptam formando ângulos retos, dizemos que elas são perpendiculares.
EXERCÍCIOS
1) Classifique os ângulos apresentados nas figuras em agudos, obtusos ou reto:
2) Identifique na figura:
3) Responda:
b) O menor ângulo formado pelos ponteiros de um relógio às 2 horas é um ângulo agudo,reto ou obtuso?
c) O menor ângulo formado pelos ponteiros de um relógio às 5 horas é um ângulo é um ângulo agudo, reto ou obtuso?
4) Observe a figura e responda:
Qual o número de elementos do conjunto { a,b,c,x,y,z}?