Função de 1º grau
Matemática

Função de 1º grau


Toda função do 1º grau possui a seguinte lei de formação: y = ax + b, onde a e b são números reais e a ≠ 0. Esse modelo de função contribui na elaboração e resolução de situações problemas cotidianas. Através de exemplos aplicados mostraremos a importância dos estudos relacionados às funções do 1º grau.

Exemplo 1

Na produção de peças, uma fábrica tem um custo fixo de R$ 200,00 mais um custo variável de R$ 1,20 por peça produzida. Qual o custo de produção de 10.000 peças?
Quantas peças podem ser produzidas com R$ 20.000,00?

Lei de formação da função
Note que temos um valor fixo de R$ 200,00 e um valor que varia de acordo com a quantidade de peças produzidas, R$ 1,20.
y = 1,2x + 200

Custo para produção de 10.000
y = 1,2*10.000 + 200
y = 12.000 + 200
y = 12.200
O custo para produção de 10.000 peças é de R$ 12.200,00.

Número de peças que podem ser produzidas com R$ 20.000,00
1,2x + 200 = 20.000
1,2x = 20.000 – 200
1,2x = 19.800
x = 19.800 / 1,2
x = 16.500
Serão produzidas 16.500 peças

Exemplo 2

Uma empresa de planos de saúde propõe a seus clientes as seguintes opções de pagamento mensais:

Plano A: um valor fixo de R$ 110,00 mais R$ 20,00 por consulta dentro do período.
Plano B: um valor fixo de R$ 130,00 mais R$ 15,00 por consulta dentro do período.
Analise os planos no intuito de demonstrar em quais condições um ou outro é mais vantajoso.

Função do plano A: y = 20x + 110
Função do plano B: y = 15x + 130

Momento em que os planos são exatamente iguais: A = B
20x + 110 = 15x + 130
20x – 15x = 130 – 110
5x = 20
x = 20/5
x = 4

Custo do plano A menor que o custo do plano B: A < B. 20x + 110 < 15x + 130 20x – 15x < 130 – 110 5x < 20 x < 20/5 x < 4 Custo do plano B menor que o custo do plano A: B < A. 15x + 130 < 20x + 110 15x – 20x < 110 – 130 – 5x < – 20 (-1) x > 20/5
x > 4

Se o cliente realizar quatro consultas por mês, ele pode optar por qualquer plano.
Se o número de consultas for maior que quatro, o plano B possui um custo menor.
Caso o número de consultas seja menor que quatro, o plano A possui um custo menor.




- Função De 1º Grau E Inversa
Toda função do 1º grau possui a seguinte lei de formação: y = ax + b, onde a e b são números reais e a ≠ 0. Esse modelo de função contribui na elaboração e resolução de situações problemas cotidianas. Através de exemplos aplicados mostraremos...

- Valor Numérico De Expressões Algébricas
As expressões algébricas são estruturas matemáticas formadas por números, letras e sinais operatórios. Elas possuem valor numérico desde que sejam fornecidas as variáveis associadas a números reais. Dessa forma substituímos os valores na expressão...

- Função Do 1º Grau
As funções são utilizadas em situações nas quais ocorre a dependência de um valor em relação a outro. Por exemplo, um plano de saúde oferece dois tipos de pacotes de serviço, veja: Pacote 1: taxa única de R$ 180,00 e consultas no valor de R$...

- Coordenadas Do Vértice De Uma Parábola
Para determinarmos os vértices de uma parábola temos que encontrar o par ordenado de pontos que constituem as coordenadas de retorno da parábola. Esse ponto de retorno da parábola, mais conhecido como vértice da parábola, pode ser calculado com...

- Função
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com    ...



Matemática








.