Fusão Nuclear
Matemática

Fusão Nuclear


É o processo no qual dois ou mais núcleos atómicos se juntam e formam um outro núcleo de maior número atômico. A fusão nuclear requer muita energia para acontecer, e geralmente liberta muito mais energia que consome. Quando ocorre com elementos mais leves que o ferro e o níquel (que possuem as maiores forças de coesão nuclear de todos os átomos, sendo portanto mais estáveis) ela geralmente liberta energia, e com elementos mais pesados ela consome. Até hoje início do século XXI, o homem ainda não conseguiu encontrar uma forma de controlar a fusão nuclear como acontece com a fissão. O principal tipo de fusão que ocorre no interior das estrelas é o de Hidrogênio em Hélio, onde dois prótons se fundem em uma partícula alfa (um núcleo de hélio), liberando dois pósitrons, dois neutrinos e energia. Mas dentro desse processo ocorrem várias reações individuais, que variam de acordo com a massa da estrela. Para estrelas do tamanho do nosso Sol ou menores, a cadeia próton-próton é a reacção dominante. Em estrelas mais pesadas, predomina o ciclo CNO.
Vale ressaltar que há conservação da energia, e, portanto, pode-se calcular a massa dos quatro prótons e o núcleo de hélio, e subtrair a soma das massas das partículas iniciais daquela do produto desta reação nuclear para calcular a massa/energia emitida.
Utilizando a equação E=mc2, pode-se calcular a energia liberada, oriunda da diferença de massa. Uma vez que o valor do "c" é muito grande ( aprox. 3 . 108 m/s ), mesmo uma massa muito pequena corresponde a uma enorme quantidade de energia. É este fato que levou muitos engenheiros e cientistas a iniciar projetos para o desenvolvimento de reatores de fusão para gerar eletricidade (por exemplo, a fusão de poucos cm3 de deutério, um isótopo de hidrogênio, produziria uma energia equivalente àquela produzida pela queima de 20 toneladas de carvão).

Requisitos para a fusão

Uma substancial barreira de energia deve ser vencida antes que a fusão possa ocorrer. A grandes distâncias, dois núcleos expostos se repelem mutuamente devido à força eletrostática que atua entre seus protões positivamente carregados. Se os núcleos puderem ser aproximados suficientemente, porém, a barreira eletrostática pode ser sobrepujada pela força nuclear forte a qual é mais poderosa a curta distância do que a repulsão eletromagnética.
Quando um núcleo tal como o próton ou nêutron é adicionado a um núcleo, ele é atraído pelos outros núcleons, mas principalmente por seus vizinhos imediatos devido à força de curto alcance. Os núcleons no interior do núcleo têm mais vizinhos do que aqueles na sua superfície. Desde que núcleos menores têm uma grande razão de superfície para volume, a energia de ligação por núcleon devido à força nuclear forte geralmente aumenta como o aumento do tamanho do núcleo, mas atinge um valor limite que corresponde à vizinhança do núcleon totalmente preenchida.
A força eletrostática, por outro lado, é uma força proporcional ao inverso do quadrado da distância; então, um próton adicionado ao núcleo ira sentir uma repulsão eletrostática de todos os prótons no núcleo. A energia eletrostática por núcleon devido à força eletrostática irá portanto aumentar independentemente do tamanho do núcleo.
O resultado combinado destas duas forças opostas é que a energia de ligação por núcleon geralmente aumenta com o aumento de tamanho do átomo, para elementos até com núcleo do tamanho de ferro e níquel, e diminui para núcleos mais pesados. Eventualmente, a energia de ligação se torna negativa e núcleos muitos pesados não são estáveis. Os quatro núcleos blindados mais compactos, em ordem decrescente de energia de ligação, são 62Ni, 58Fe, 56Fe, and 60Ni. Embora o isótopo do Níquel 62Ni seja o mais estável, o isótopo do Ferro 56Fe é uma ordem de magnitude mais comum. Isto é devido em grande parte à grande razão de desintegração do 62Ni no interior de estrelas conduzida pela absorção de fótons.
Uma notável exceção a esta regra geral é o núcleo do hélio-4, cuja energia de ligação é maior que a do lítio, o próximo elemento mais pesado. O princípio de exclusão de Pauli provê um explicação para este comportamento excepcional ? isto se dá porque os prótons e nêutrons são férmions, eles não podem coexistir exatamente no mesmo estado. Cada estado energético de um próton ou nêutron em um núcleo pode acomodar uma partícula de spin para abaixo e outra de spin para acima. O Hélio-4 tem uma banda de energia de ligação anormalmente grande porque seu núcleo consiste de dois prótons e dois nêutrons; então todos os núcleons dele podem estar em um estado fundamental. Qualquer núcleon adicional deverá ir para um estado energético alto.
A situação é similar se dois núcleos são colocados juntos. Ao se aproximarem, todos os prótons em um núcleo repelem todos os prótons do outro, até o ponto em que os dois núcleos entrem em contato para que a força nuclear forte domine. Consequentemente, mesmo quando o estado de energia final é mais baixo, há uma grande barreira energética que deve ser ultrapassada primeiro. Na química, este fato é conhecido como energia de ativação. Em física nuclear ele é chamado de barreira de Coulomb.
A barreira de Coulomb é menor para os isótopos do hidrogênio ? eles contêm uma única carga positiva em seus núcleos. Um bipróton não é estável, então os nêutrons devem ser envolvidos, de forma a produzir um núcleo de hélio.
Usando combustível deutério-trítio, a barreira de energia resultante é de cerca de 0,1 MeV. Em comparação, a energia necessária para remover um elétron do hidrogênio é 13,6 eV, cerca 7.500 vezes menos energia. O resultado (intermediário) da fusão é um núcleo instável de 5He, o qual imediatamente ejeta um nêutron com 14,1 MeV. A energia recuperada do núcleo de 4He remanescente é 3,5 MeV, então a energia total liberada é 17,6 MeV. Isto é muitas vezes mais que a barreira de energia a ser transposta.
Se a energia para iniciar a reação vem da aceleração de um núcleo, o processo é chamado de fusão por projétil-alvo; se ambos os núcleos são acelerados, isto é fusão projétil|projétil. Se o núcleo faz parte de um plasma próximo ao equilíbrio térmico, denominamos fusão termonuclear. A temperatura é uma medida da energia cinética média das partículas, então por aquecimento o núcleo deverá ganhar energia e eventualmente transpor a barreira de 0,1 MeV. A conversão das unidade entres elétron-volts e kelvins mostra que esta barreira será transposta quando a temperatura ultrapassar 1 GK, obviamente uma temperatura muito alta.
Há dois fatos que podem diminuir a temperatura necessária. Um é o fato que a temperatura é uma média da energia cinética, implicando que alguns núcleos a esta temperatura poderão já ter uma energia maior que 0,1 MeV, enquanto outros um pouco menos. Estes núcleos na faixa de alta-energia da distribuição de velocidade participam da maioria das reações de fusão. O outro efeito é o tunelamento quântico. O núcleo não precisa sempre ter bastante energia, podendo atravessar, por efeito túnel, a barreira restante. Por esta razão, combustíveis a temperaturas menores podem experimentar eventos de fusão, a uma taxa mais baixa.
A seção transversal da reação ? é uma medida da probabilidade de reação de fusão com uma função da velocidade relativa dos dois núcleos reativos. Se os núcleos têm uma distribuição de velocidade, isto é, uma distribuição térmica com a fusão termonuclear, então eles são úteis para obter uma média sobre a distribuição dos produtos da seção transversal e da velocidade. A taxa de reação (fusão por volume por tempo) é <?v> vezes o produto da densidade dos participantes:

$$\color{white}f = n_1 n_2 \langle \sigma v \rangle$$
Se um tipo de núcleo está reagindo com si próprio, tal como a reação PP, então o produto n1n2 pode ser substituído por (1 / 2)n2.


$$\color{white}\langle \sigma v \rangle$$ aumenta de praticamente zero a temperatura ambiente para um significativo valor a temperatura de 10 - 100 keV. A estas temperaturas, bem abaixo da energia de ionização típica (13,6 eV no caso do hidrogênio), os reativos da fusão existem um estado de plasma.
O significado de <?v> como uma função da temperatura em um experimento com uma energia de tempo confinamento é determinado pela utilização do critério de Lawson.




- Como Funciona A Bomba Atômica?
As bombas nucleares, são as armas de guerra mais letais já inventadas pelo homem. Mesmo sendo elas tão comentadas, muitas pessoas não sabem como funcionam: Abaixo segue um texto da revista Super-Interesssante, escrito po Alexandre Versignassi sobre...

- Curiosidades Científicas
Se uma pessoa gritasse durante 8 anos, 7 meses e 6 dias, teria produzido energia suficiente para aquecer uma xícara de café? Em 10 minutos, um furacão produz mais energia do que todas as Armas Nucleares juntas. A probabilidade de você viver até os...

- Fecundação
Fecundação Quando os grãos de pólen chegam até o estigma da flor ocorre a germinação, dando origem ao tubo polínico. Uma divisão mitótica acontece no núcleo reprodutivo, formando dois núcleos espermáticos. Um dos gametas masculinos formado...

- O Sistema Solar
O Sistema Solar O sistema solar é um conjunto de planetas, asteróides e cometas que giram ao redor do sol. Cada um se mantém em sua respectiva órbita em virtude da intensa força gravitacional exercida pelo astro, que possui massa muito maior que...

- Determinando A Massa Do Sol
A força centrípeta é a força resultante que atrai o corpo para o centro da trajetória em um movimento curvilíneo ou circular. Corpos que se deslocam em movimento retilíneo uniforme possuem velocidade modular constante. Entretanto, um corpo que...



Matemática








.