Matemática
Inclinação e coeficiente angular de uma reta
Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br
www.accbarrosogestar.wordpress.com
Sabemos que em uma reta existem infinitos pontos, com apenas dois desses pontos podemos representar essa mesma reta no plano cartesiano, pois dois pontos distintos sempre serão colineares (pertencerão ou formarão uma reta).
Com o estudo da geometria analítica aprendemos que não é necessário ter dois pontos distintos para formar uma reta, podemos construir uma reta no plano cartesiano conhecendo apenas um de seus infinitos pontos e sabendo o valor do ângulo formado com a reta e o eixo Ox.
Essa outra forma de representarmos uma reta será feita levando em consideração a inclinação da reta e o seu coeficiente angular. Considere uma reta s que intercepta o eixo Ox no ponto M.
A reta s está formando com o eixo Ox um ângulo β. A medida desse ângulo é feita em sentido anti-horário a partir de um ponto pertencente ao eixo Ox. Assim, podemos dizer que a reta s tem inclinação β e o seu coeficiente angular (m) igual a: m = tg β.
A inclinação da reta irá variar entre 0° ≤ β <180°. Veja os exemplos de algumas possibilidades de variação da inclinação da reta e seus respectivos coeficientes angulares:
Exemplo 1:
Nesse exemplo o valor da inclinação é menor que 90º.
Inclinação igual a 45° e coeficiente angular igual a: m = tg 45° = 1.
Exemplo 2:
Nesse exemplo o valor da inclinação da reta é maior que 90° e menor que 180°.
Inclinação igual a 125° e coeficiente angular da reta igual a: m = tg 125° = -2.
Exemplo 3:
Quando a reta for paralela ao eixo Oy, ou seja, tiver uma inclinação igual a 90° o seu coeficiente angular não irá existir, pois não é possível calcular a tg 90°.
Exemplo 4:
Nesse exemplo a reta s é paralela ao eixo Ox, ou seja, seu ângulo de inclinação é igual a 180°, portanto, o seu coeficiente angular será igual a: m = tg 180º = 0.
-
Equação Da Reta
Toda reta não-vertical (reta que possui inclinação diferente de 90º) possui uma equação que representa todos os seus pontos. Essa equação é demonstrada através de um ponto pertencente a essa reta mais o seu coeficiente angular (m). Considere...
-
Equação Fundamental Da Reta
Podemos determinar a equação fundamental de uma reta utilizando o ângulo formado pela reta com o eixo das abscissas (x) e as coordenadas de um ponto pertencente à reta. O coeficiente angular da reta, associado à coordenada do ponto, facilita a representação...
-
Equação Fundamental Da Reta
Com um ponto e um ângulo podemos indicar e construir uma reta. E se a reta formada não for vertical (reta vertical é perpendicular ao eixo Ox) com o ponto pertencente a ela mais o seu coeficiente angular (tangente do ângulo de inclinação) é possível...
-
Coeficiente Angular
Professor de Matemática Antonio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] HTTP://ensinodematemtica.blogspot.comhttp://accbarrosogestar.blogspot.com.br www.accbarrosogestar.wordpress.com A fórmula...
-
Equação Fundamental Da Reta
Podemos determinar a equação fundamental de uma reta utilizando o ângulo formado pela reta com o eixo das abscissas (x) e as coordenadas de um ponto pertencente à reta. O coeficiente angular da reta, associado à coordenada do ponto, facilita a representação...
Matemática