Permutação com elementos repetidos
Matemática

Permutação com elementos repetidos


Permutação de elementos repetidos deve seguir uma forma diferente da permutação, pois elementos repetidos permutam entre si. Para compreender como isso acontece veja o exemplo abaixo:

A permutação da palavra MATEMÁTICA ficaria da seguinte forma:

Sem levar em consideração as letras (elementos) repetidas, a permutação ficaria assim:

P10 = 10! = 3.628.800

Agora, como a palavra MATEMÁTICA possui elementos que repetem, como a letra A que repete 3 vezes, a letra T repete 2 vezes e a letra M repete 2 vezes, assim a permutação entre si dessas repetições seria 3! . 2! . 2!. Portanto, a permutação da palavra MATEMÁTICA será:



Portanto, com a palavra MATEMÁTICA podemos montar 151200 anagramas.

Seguindo esse raciocínio podemos concluir que, de uma maneira geral, a permutação com elementos repetidos é calculada utilizando a seguinte fórmula:

Dada a permutação de um conjunto com n elementos, alguns elementos repetem n1 vezes, n2 vezes e nnvezes. Então, a permutação é calculada:



Exemplo 1:
Quantos anagramas podem ser formados com a palavra MARAJOARA, aplicando a permutação teremos:


Portanto, com a palavra MARAJOARA podemos formar 7560 anagramas.

Exemplo 2:
Quantos anagramas podem ser formados com a palavra ITALIANA, aplicando a permutação teremos:


Portanto, com a palavra ITALIANA podemos formar 3360 anagramas.

Exemplo 3:
Quantos anagramas com a palavra BARREIRA podem ser formados, sendo que deverá começar com a letra B?

B ___ ___ ___ ___ ___ ___ ___
↓                          ↓
1                       P2,37

1 . P2,37 =   7!    = 420
                  2! . 3!

Portanto, com a palavra BARREIRA podemos formar 420 anagramas.
Por Danielle de MIranda
Graduada em Matemática




- Permutações
Entendemos por permutações uma sequência ordenada, construída por elementos disponíveis. O número de permutações de n elementos é dado pelo fatorial de n, isto é, basta calcularmos o fatorial do número de elementos do conjunto fornecido. Para...

- Analíse Combinatorio
Análise Combinatória é um conjunto de procedimentos que possibilita a construção de grupos diferentes formados por um número finito de elementos de um conjunto sob certas circunstâncias. Na maior parte das vezes, tomaremos conjuntos Z com m elementos...

- Probabilidades
O anagrama é um jogo de palavras que utiliza a transposição ou rearranjo de letras de uma palavra ou frase, com o intuito de formar outras palavras com ou sem sentido. É calculado através da propriedade fundamental da contagem, utilizando o fatorial...

- Anagrama
A restrição principal para as permutações simples é quanto aos elementos que serão permutados, pois é necessário que estes sejam distintos, ou seja, que não se repitam. Entretanto, nem sempre conseguiremos situações nas quais os elementos serão...

- Anagrama
O anagrama é um jogo de palavras que utiliza a transposição ou rearranjo de letras de uma palavra ou frase, com o intuito de formar outras palavras com ou sem sentido. É calculado através da propriedade fundamental da contagem, utilizando o fatorial...



Matemática








.