Ângulos
Matemática

Ângulos



ÂNGULOS SUPLEMENTARES
Observe os ângulos AÔB e BÔC na figura abaixo:
As semi-retas formam um ângulo raso.
Verifique que:
m ( AÔB ) + m (BÔC) = 180º
Nesse caso, dizemos que os ângulos AÔB e BÔC são suplementares. Assim:

Dois ângulos são suplementares quando a soma de suas medidas é 180º.
Exemplo:
Os ângulos que medem 82º e 98º são suplementares, pois 82º + 98º = 180º.
Dizemos que o ângulo de 82º é o suplemento do ângulo de 98º, e vice-versa.
Para calcular a medida do suplemento de um ângulo, devemos determinar a diferença entre 180º e a medida do ângulo agudo dado.


Medida do ângulo Suplemento
X 180º - X
Exemplo:
Solução
Medida do suplemento = 180º - medida do ângulo
Medida do suplemento = 180º - 55º
Medida do suplemento = 125º
Logo, a medida do suplemento do ângulo de 55º é 125º.
ÂNGULOS COMPLEMENTARES
Observe os ângulos AÔB e BÔC na figura abaixo:
Verifique que:
m (AÔB) + m (BÔC) = 90º
Nesse caso, dizemos que os ângulos AÔB e BÔC são complementares.
Assim:

Dois ângulos são complementares quando a soma de suas medidas é 90º.
Exemplo:
Os ângulos que medem 42º e 48º são complementares, pois 42º + 48º = 90º.
Dizemos que o ângulo de 42º é o complemento do ângulo de 48º, e vice-versa.
Para calcular a medida do complemento de um ângulo, devemos determinar a diferença entre 90º e a medida do ângulo agudo dado.

Medida do ângulo Complemento
x 90º - x
Exemplo:
Solução
Medida do complemento = 90º - medida do ângulo
Medida do complemento = 90º - 75º
Medida do complemento = 15º
Logo, a medida do complemento do ângulo de 75º é 15º.
Observação:
Os ângulos XÔY e YÔZ da figura ao lado, além de complementares, são também adjacentes. Dizemos que esses ângulos são adjacentes complementares.

ÂNGULOS OPOSTOS PELO VÉRTICE
Observe os ângulos AÔB e CÔD na figura abaixo:
Verifique que:
Nesse caso, dizemos que os ângulos AÔB e CÔD são opostos pelo vértice (o.p.v). Assim:

Dois ângulos são opostos pelo vértice quando os lados de um deles são semi-retas opostas aos lados do outro.
Na figura abaixo, vamos indicar:
Sabemos que:
X + Y = 180º ( ângulos adjacentes suplementares)
X + K = 180º ( ângulos adjacentes suplementares)
Então:
Logo: y = k
Assim:
m (AÔB) = m (CÔD) AÔB CÔD
m (AÔD) = m (CÔB) AÔD CÔB
Daí a propriedade:

Dois ângulos opostos pelo vértice são congruentes.

Observe uma aplicação dessa propriedade na resolução de um problema:
Solução:
x + 60º = 3x - 40º ângulos o.p.v
x - 3x = - 40º - 60º
-2x = - 100º
x = 50º
Logo, o valor de x é 50º.
fonte: http://matematica--devrev.blogspot.com




- Ângulos
Denominamos ângulo a região do plano limitada por duas semirretas de mesma origem. As semirretas recebem o nome de lados do ângulo e a origem delas, de vértice do ângulo. A unidade usual de medida de ângulo, de acordo com o sistema de medidas,...

- Angulos Opv
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected]          www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br ...

- Angulos Opv
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected]          www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br ...

- Ângulos
ÂngulosFonte: http://www.somatematica.com.brÂNGULOS ADJACENTES Observe os exemplos de ângulos consecutivos vistos anteriormente e verifique que: Os ângulos AÔC e CÔB não possuem pontos internos comuns ...

- Angulos Complementares, Angulos Suplementares E Angulos Adjacentes
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected]          www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br ...



Matemática








.