Matemática
Conjuntos numericos
Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br
WWW.profantoniocarneiro.com
A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em que procurava abstrair a natureza por meio de processos de determinação de quantidades.
E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos. E é sobre eles que passamos a dissertar.
Conjunto dos Números Naturais
Como decorrência da necessidade de contar objetos surgiram os números naturais que é simbolizado pela letra
N e é formado pelos números 0, 1, 2, 3, …, ou seja:
N = {0; 1; 2; 3; …}
Um subconjunto de
N muito usado é o conjunto dos números naturais menos o zero, ou seja
N – {0} = conjuntos dos números naturais positivos, que é representado por
N*.
Observações:
- Em N são definidas apenas as operações de adição e multiplicação;
- Isto é fato pois se a e b são dois números naturais então a + b e a.b são também números naturais. Esta propriedade é conhecida como fechamento da operação;
- Valem as propriedades associativa, comutativa e elemento neutro (0 para a adição e 1 para a multiplicação) para as duas operações e a distributiva para a multiplicação em N. Veja o artigo Produtos Notáveis para maiores detalhes sobre essas propriedades, no caso da multiplicação, onde o conjunto universo considerado é o dos números reais, que abordaremos mais abaixo, e que são válidas para N;
- Em N a subtração não é considerada uma operação, pois se a diferente de zero pertence a N o simétrico -a não existe em N.
Como consequência, surge um novo conjunto para atender essa necessidade.
Conjunto dos Números Inteiros
Chama-se o conjunto dos números inteiros, representado pela letra
Z, o seguinte conjunto:
Z = {…, -3; -2; -1; 0; 1; 2; 3; …}
No conjunto
Z distinguimos alguns subconjuntos notáveis que possuem notação própria para representá-los:
- Conjunto dos inteiros não negativos: Z+ = {0; 1; 2; 3; …};
- Conjunto dos inteiros não positivos: Z- = {…; -3; -2; -1; 0};
- Conjunto dos inteiros não nulos: Z* = {…, -3; -2; -1; 1; 2; 3; …};
- Conjunto dos inteiros positivos Z+* = {1; 2; 3; …};
- Conjunto dos inteiros negativos Z-* = {…; -3; -2; -1}.
Note que
Z+ =
N e, por essa razão,
N é um subconjunto de
Z.
Observações:
- No conjunto Z, além das operações e suas propriedades mencionadas para N, vale a propriedade simétrico ou oposto para a adição. Isto é: para todo a em Z, existe -a em Z, de tal forma que a + (-a) = 0;
- Devido a este fato podemos definir a operação de subtração em Z: a – b = a + (-b) para todo a e b pertencente a Z;
- Note que a noção de inverso não existe em Z. Em outras palavras, dado q pertencente a Z, diferente de 1 e de -1, 1/q não existe em Z;
- Por esta razão não podemos definir divisão no conjunto dos números inteiros;
- Outro conceito importante que podemos extrair do conjunto Z é o de divisor. Isto é, o inteiro a é divisor do inteiro b – simbolizado por b | a – se existe um inteiro c tal que b = ca;
- Os números inteiros podem ser representados por pontos de uma reta orientada ou eixo, onde temos um ponto de origem, o zero, e à sua esquerda associam-se ordenadamente os inteiros negativos e à sua direita os inteiros positivos, separados por intervalos de mesmo comprimento;
- Cada ponto da reta orientada é denominado de abcissa;
- Em Z podemos introduzir o conceito de módulo ou valor absoluto: |x| = x se x >= 0 e |x| = -x se x < >x pertencente a Z. Como decorrência da definição temos que |x| >= 0 para qualquer número inteiro.
Conjunto dos Números Racionais
O conjunto dos números racionais, simbolizado pela letra
Q, é o conjunto dos números que podem ser escritos na forma de uma fração p/q, com
p e
q inteiros quaisquer e
q diferente de zero:
Como todo número inteiro pode ser escrito na forma p/1, então
Z é um subconjunto de
Q. Valem também para o conjuntos dos números racionais as notações
Q* (conjunto dos números racionais não nulos),
Q+ (conjunto dos números racionais não negativos) e
Q- (conjunto dos números racionais não positivos).
Observações:
- São válidas todas as propriedades vistas para o conjunto dos números inteiros;
- Além disso é válida a propriedade simétrico ou inverso para a multiplicação. Isto é, para todo a/b pertencente a Q, a/b diferente de zero, existe b/a em Q tal que (a/b)(b/a) = 1;
- Decorre da propriedade acima que é possível definir a operação de divisão em Q* da seguinte forma (a/b):(c/d) = (a/b).(d/c), para quaisquer a, b, c e d pertencente a Q;
- Todo número racional p/q pode ser escrito como um número decimal exato (ex: 1/2 = 0,5) ou como uma dízima periódica (1/3 = 0,333…).
Números Irracionais
Como o próprio nome sugere um número irracional é todo número não racional, isto é, todo número que não pode ser escrito na forma de uma fração p/q, onde
p e
q são inteiros e
q diferente de zero.
São exemplos de números irracionais a raiz quadrada de 2 e a raiz cúbica de 3, ou seja, nenhum deles pertence a
Q.
A título de ilustração vamos demonstrar, pela teoria do absurdo, que a raiz quadrada de 2 não pertence a
Q.
Suponhamos que raiz quadrada de 2 é racional e admitamos que possa ser escrita como uma fração irredutível a/b, b diferente de zero:
Da expressão acima concluímos que
a ao quadrado é par e que, portanto,
a é par. Logo a = 2m, com
m inteiro. Substituindo o valor de
a na expressão anterior vem que:
Da mesma forma obtemos que
b também é par, o que é um absurdo pois a/b é irredutível, ou seja,
a e
b são primos entre si, e portanto têm como divisor comum apenas o número 1, isto é, mdc(a,b) = 1.
Caso deseje obter maiores informações sobre as operações com números irracionais consulte os artigos publicados no blog na categoria Matemática.
Conjunto dos Números Reais
O conjunto dos números reais, simbolizado pela letra
R, é o formado por todos os números racionais e por todos os números irracionais:
R = {x | x é racional ou x é irracional}
Desse modo todos os conjuntos numéricos (
N,
Z e
Q), bem como o conjunto dos números irracionais são subconjuntos de
R.
Da mesma forma destacamos três outros subconjuntos de
R:
R* = conjunto dos reais não nulos,
R+ = conjunto dos reais não negativos e
R- = conjunto dos reais não positivos.
Conjunto dos Números Complexos
O conjunto dos números complexos, simbolizado pela letra
C, foi criado para dar sentido às raízes de índice par de números negativos, com a definição da unidade imaginária
i igual a raiz quadrada de -1, e são constituídos de elementos na forma a + b
i, onde
a e
b são reais. Desse fato temos que
R está contido em
C.
Referências:
- Fundamentos de Matemática Elementar, Gelson Iezzi, Osvaldo Dolce & Carlos Murakami, São Paulo, Atual Editora Ltda, edição 1977;
- Matemática para o Ensino Médio: Volume Único, Manoel Jairo Bezerra, São Paulo, Editora Scipione, 2001.
-
Conjuntos Numéricos
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com Conjunto...
-
Conjuntos
Lucas Martins Conjunto dos Números Naturais São todos os números inteiros positivos, incluindo o zero. É representado pela letra maiúscula N. Caso queira representar o conjunto dos números naturais não-nulos (excluindo o zero), deve-se colocar...
-
Conjuntos Numéricos
1- Naturais (IN)N = {0,1,2,3,4,5...} Convém destacar um subconjunto: N* = N - {0} = {1,2,3,4,5...} É importante lembrar que sempre é possível efetuar a adição e a multiplicação, isto é, a soma e o produto de dois números naturais sempre...
-
Conjuntos Numéricos
Conjunto dos Números Naturais (IN) Um subconjunto importante de IN é o conjunto IN*: IN*={1, 2, 3, 4, 5,...} ► o zero foi excluído do conjunto IN. Podemos considerar o conjunto dos números naturais ordenados sobre uma reta, como mostra o gráfico...
-
Conjunto
1- Naturais (IN) N = {0,1,2,3,4,5...} Convém destacar um subconjunto: N* = N - {0} = {1,2,3,4,5...} É importante lembrar que sempre é possível efetuar a adição e a multiplicação, isto é, a soma e o produto de dois números naturais sempre terá...
Matemática