Equação Biquadrada
Matemática

Equação Biquadrada


Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email [email protected]
 www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br 

WWW.profantoniocarneiro.com         

Toda equação tem uma forma geral que a representa, as equações biquadradas possuem a seguinte forma:

ax4 + bx2 + c = 0

Sendo que a, b e c podem assumir qualquer valor real desde que a seja diferente de zero. Veja alguns exemplos de equações biquadradas.

2x4 + 5x2 – 2 = 0; a = 2, b = 5, c = -2

-x4 – x = 0; a = -1, b = -1, c = 0

x4 = 0; a = 1, b = 0, c = 0

Observando as equações biquadradas percebemos uma de suas características: são equações onde os expoentes das suas incógnitas são sempre pares.

Para resolver esse tipo de equação é preciso substituir as incógnitas, tornando-a uma equação do segundo grau, veja os exemplos abaixo e compreenda como resolver passo a passo uma equação biquadrada.

Exemplo 1:

Resolva a equação biquadrada (x2 – 1) (x2 – 12) + 24 = 0. Devemos organizá-la primeiro, ou seja, tirar os parênteses e unir os termos semelhantes.

(x2 – 1) (x2 – 12) + 24 = 0
x4 – 12x2 – x2 + 12 + 24 = 0
x4 – 13x2 + 36 = 0

Agora devemos substituir a incógnita x2 por y.

x2 = y

x4 – 13x2 + 36 = 0
x2 . x2 – 13x2 + 36 = 0

y2 – 13y + 36 = 0

Resolvendo essa equação do segundo grau encontraremos como resultados de y’ e y’’ respectivamente os valores 9 e 4, como a incógnita da equação biquadrada é x, substituímos os valores de y na igualdade x2 = y e obteremos os respectivos valores de x.

Para y = 9
x2 = y
x2 = 9
x = ±√9
x = ± 3

Para y = 4
x2 = y
x2 = 4
x = ±√4
x = ±2

Portanto, a solução dessa equação biquadrada será {-3, -2, 2, 3}.

Exemplo 2:

Resolva a equação x4 – 5x2 + 10 = 0

Substituindo a incógnita x2 por y.

x2 = y

y2 – 5y + 10 = 0

Resolvendo essa equação do segundo grau o valor do discriminante ∆ será negativo, assim a solução será vazia.
extraido de www.mundoeducacao.com.br




- Equação Biquadrada
Equações biquadradas é uma equação escrita da seguinte forma geral: ax4 + bx2 + c = 0. Para resolver (encontrarmos as sua raízes) é preciso transformá-las em uma equação do segundo grau. Para melhor compreensão veja no exemplo abaixo como essa...

- Equação Biquadrada
Toda equação tem uma forma geral que a representa, as equações biquadradas possuem a seguinte forma: ax4 + bx2 + c = 0 Sendo que a, b e c podem assumir qualquer valor real desde que a seja diferente de zero. Veja alguns exemplos de equações biquadradas....

- Equações Biquadradas
Equações BiquadradasDanielle de Miranda Equação de 4º grauEquação biquadrada é uma equação de quarto grau, que para achar os valores de suas raízes é preciso transformá-la em uma equação de 2º grau. Essa equação...

- Equação Biquadrada
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br  WWW.profantoniocarneiro.com  ...

- Equação Biquadrada
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br  WWW.profantoniocarneiro.com  ...



Matemática








.