Matemática
Números primos
Devemos antes de tudo lembrar o que são números primos. Definimos como números primos aqueles que são divisíveis apenas por 1 e ele mesmo. Um número seja maior do que 1 que não seja primo é chamado de composto.
Exemplos:
2 tem apenas os divisores 1 e 2, portanto 2 é primo.
23 tem apenas os divisores 1 e 23, portanto 23 é primo.
10 tem os divisores 1, 2, 5 e 10, portanto 10 não é primo.
Atenção:
* 1 não é um número primo, porque ele tem apenas um divisor ele mesmo.
* 2 é o único número primo que é par.
Os números que têm mais de dois divisores são chamados números compostos.
Exemplo:
36 tem mais de dois divisores então 36 é um número composto.
Como saber se um número é primo
Devemos dividir o número dado pelos números primos menores que ele, até obter um quociente menor ou igual ao divisor. Se nenhum das divisões for exata, o número é primo.
Decomposição em fatores primos
Todo número natural, maior que 1, pode ser escrito na forma de uma multiplicação em que todos os fatores são números primos. É o que nós chamamos de forma fatorada de um número
Decomposição do número 36:
36 = 9 x 4
36 = 3 x 3 x 2 x 2
36 = 3 x 3 x 2 x 2 = 22 x 32
No produto 2 x 2 x 3 x 3 todos os fatores são primos.
Chamamos de fatoração de 36 a decomposição de 36 num produto de fatores primos.
Então a fatoração de 36 é 22 x 32
Método Prático Escrever a Forma Fatorada de um Número Natural
Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os passos para montar esse dispositivo:
1º Dividimos o número pelo seu menor divisor primo;
2º A seguir, dividir o quociente obtido pelo seu menor divisor primo.
3º Proceder dessa forma, daí por diante, até obter o quociente 1.
4º A forma fatorada do número
120 = 23 x 3 x 5
numeros_primos
Determinação dos divisores de um número
Na prática determinamos todos os divisores de um número utilizando os seus fatores primos.
Vamos determinar, por exemplo, os divisores de 72:
1º Fatoramos o número 72.
2º Traçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer número.
3º Multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e escrevemos esses produtos ao lado de cada fator primo.
4º Os divisores já obtidos não precisam ser repetidos.
Então o conjunto dos divisores de 72 = {1,2,3,4,6,8,9,12,18,36,72}
numeros_primos2
Para estudar mais sobre os Números Prmos:
Números Primos
-
Multiplos E Divisores
Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por 3, então 3 é divisor de 15, assim, 15 é múltiplo de 3. Se 8 é divisível por 2, então 2 é divisor de 8, assim, 8 é múltiplo de 2....
-
Números Primos
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com Um número...
-
Mmc E Mdc
(M.D.C) E (M.M.C). MÁXIMO DIVISOR COMUM O maior dos divisores comuns de dois ou mais números chama-se máximo divisor comum (m.d.c) exemplos consideremos os conjuntos dos divisores de 12 e 18 D12 = { 1,2,3,4,6,12} D18 = { 1,2,3,6,9,18} Os mesmos...
-
Divisores De Um Número
Divisores de um Número Definimos divisores de um número n, como sendo o conjunto numérico formado por todos os números que o dividem exatamente. Vejamos o 12 por exemplo: Somente os quocientes 1, 2, 3, 4, 6 e 12 o dividem exatamente, já o quociente...
-
NÚmeros Primos
Os números que admitem apenas dois divisores (ele próprio e 1 ) são chamados de números primos. exemplos a) 2 é um número primo, pois D2 = { 1,2} b) 3 é um número primo, pois D3 = { 1,3} c) 5 é um número primo, pois D5 = { 1,5} d) 7 é um número...
Matemática