Matemática
Operações com conjuntos
Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br
WWW.profantoniocarneiro.com
Conheça as principais
operações com conjuntos e saiba como aplicá-las e resolver os exercícios. Nesta aula você vai estudar, União de conjuntos, Interseção de conjuntos, Diferença de conjuntos, Complementar de conjuntos, Elementos do conjunto, Partição de conjuntos e muito mais
.
União de Conjuntos(c )Dados os conjuntos A e B , define-se o conjunto união A c B = { x; x 0 A ou x 0 B}.
Exemplo: {0,1,3} c { 3,4,5 } = { 0,1,3,4,5}. Percebe-se facilmente que o conjunto união contempla todos os elementos do conjunto A ou do conjunto B.
Propriedades imediatas:
a) A c A = A
b) A c φ = A
c) A c B = B c A (a união de conjuntos é uma operação comutativa)
d) A c U = U , onde U é o conjunto universo.
Interseção de Conjuntos (1 )
Dados os conjuntos A e B , define-se o conjunto interseção A 1 B = {x; x 0 A e x 0 B}.
Exemplo: {0,2,4,5} 1 { 4,6,7} = {4}. Percebe-se facilmente que o conjunto interseção contempla os elementos que são comuns aos conjuntos A e B.
Propriedades imediatas:
a) A 1 A = A
b) A 1 i = i
c) A 1 B = B 1 A ( a interseção é uma operação comutativa)
d) A 1 U = A onde U é o conjunto universo.
São importantes também as seguintes propriedades das
operações com conjuntos :
P1. A 1 ( B c C ) = (A 1 B) c ( A 1 C) (propriedade distributiva)
P2. A c ( B 1 C ) = (A c B ) 1 ( A c C) (propriedade distributiva)
P3. A 1 (A c B) = A (lei da absorção)
P4. A c (A 1 B) = A (lei da absorção)
Obs: Se A 1 B = φ , então dizemos que os conjuntos A e B são Disjuntos.
Diferença A - B = {x ; x 0 A e x ó B}.
Observe que os elementos da diferença são aqueles que pertencem ao primeiro conjunto, mas não pertencem ao segundo.
Exemplos:
{ 0,5,7} - {0,7,3} = {5}.
{1,2,3,4,5} - {1,2,3} = {4,5}.
Propriedades imediatas:a) A - φ = A
b) φ - A = φ
c) A - A =
d) A - B ≠ B - A ( a diferença de conjuntos não é uma operação comutativa).
Complementar de um conjunto
Quando se estuda
Operações com Conjuntos recisa-se entender a complementar de um conjnto. Trata-se de um caso particular da diferença entre dois conjuntos. Assim é , que dados dois conjuntos A e B, com a condição de que B d A , a diferença A - B chama-se, neste
Caso particular: O complementar de B em relação ao conjunto universo U, ou seja , U - B ,é indicado pelo símbolo B’ .Observe que o conjunto B’ é formado por todos os elementos que não pertencem ao conjunto B, ou seja:
B’ = {x; x ó B}. É óbvio, então, que:
a) B 1 B’ = φ
b) B 1 B’ = U
c) φ’ = U
d) U’ = φ_
Partição de um conjunto
Seja A um conjunto não vazio. Define-se como partição de A, e representa-se por part(A), qualquer subconjunto do conjunto das partes de A (representado simbolicamente por
P(A)), que satisfaz simultaneamente, às seguintes condições:
1 - nenhuma dos elementos de part(A) é o conjunto vazio.
2 - a interseção de quaisquer dois elementos de part(A) é o conjunto vazio.
3 - a união de todos os elementos de part(A) é igual ao conjunto A.
Exemplo: Seja A = {2, 3, 5}
Os subconjuntos de A serão: {2}, {3}, {5}, {2,3}, {2,5}, {3,5}, {2,3,5}, e o conjunto vazio - Ø.
Assim, o conjunto das partes de A será:
P(A) = { {2}, {3}, {5}, {2,3}, {2,5}, {3,5}, {2,3,5}, Ø }
Vamos tomar, por exemplo, o seguinte subconjunto de P(A):
X = { {2}, {3,5} }
Observe que X é uma partição de A - cuja simbologia é part(A) - pois:
a) nenhum dos elementos de X é Ø .
b) {2} 1 {3, 5}ó = Ø
c) {2} U {3, 5} = {2, 3, 5} = A
Sendo observadas as condições 1, 2 e 3 acima, o conjunto X é uma partição do conjunto A.
Observe que Y = { {2,5}, {3} } ; W = { {5}, {2}, {3} }; S = { {3,2}, {5} } são outros exemplos de partições do conjunto A.
Outro exemplo: o conjunto Y = { {0, 2, 4, 6, 8, …}, {1, 3, 5, 7, …} } é uma partição do conjunto N dos números naturais, pois {0, 2, 4, 6, 8, …} {1, 3, 5, 7, …} = Ø e {0, 2, 4, 6, 8, …} U {1, 3, 5, 7, …} = N .
Número de elementos da união de dois conjuntos
Sejam A e B dois conjuntos, tais que o número de elementos de A seja n(A) e o número de elementos de B seja n(B).
Nota: o número de elementos de um conjunto, é também conhecido com cardinal do conjunto. Representando o número de elementos da interseção A 1 B por n(A 1 B) e o número de elementos da união A c B por n(A c B) , podemos escrever a seguinte fórmula: n(A c B) = n(A) + n(B) - n(A c B)
fonte:mundovestibular.com.br
-
Conjunto
Quando falamos de operação lembramos logo de adição, subtração, divisão, multiplicação entre números. É possível também operar conjuntos. Essas operações recebem nomes diferentes, como: União de conjuntos, Intersecção de conjuntos, Diferença...
-
Conjuntos
Exemplo de interseção de conjuntos.?Interseção Os elementos que fazem parte do conjunto interseção são os elementos comuns aos conjuntos relacionados. Exemplo 1: Dados dois conjuntos A = {5,6,9,8} e B = {0,1,2,3,4,5}, se pedimos a interseção...
-
Conjunto
Ele representa conjuntos da seguinte maneira: a) b) Relação de inclusão – SubconjuntoDados dois conjuntos A e B, diz que A está contido em B ou que A é subconjunto de B, somente se, todo elemento do conjunto A também for elemento de B. Isso será...
-
Teoria Dos Conjuntos
Teoria de Conjuntos 1 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12, ... }. Esta forma de representar um conjunto, pela enumeração dos seus elementos, chama-se...
-
Conjunto
Quando falamos de operação lembramos logo de adição, subtração, divisão, multiplicação entre números. É possível também operar conjuntos. Essas operações recebem nomes diferentes, como: União de conjuntos, Intersecção de conjuntos, Diferença...
Matemática