Lembre-se:
Retas paralelas são retas que estão no mesmo plano e não possuem ponto em comum.
Vamos observar a figura abaixo:
Ângulos colaterais internos: (colaterais = mesmo lado)
A soma dos ângulos 4 e 5 é igual a 180°.
A soma dos ângulos 3 e 6 é igual a 180°.
Ângulos colaterais externos:
A soma dos ângulos 2 e 7 é igual a 180°.
A soma dos ângulos 1 e 8 é igual a 180°.
Ângulos alternos internos: (alternos = lados diferentes)
Os ângulos 4 e 6 são congruentes (iguais)
Os ângulos 3 e 5 são congruentes (iguais)
Ângulos alternos externos:
Os ângulos 1 e 7 são congruentes (iguais)
Os ângulos 2 e 8 são congruentes (iguais)
Ângulos correspondentes:
São ângulos que ocupam uma mesma posição na reta transversal, um na região interna e o outro na região externa.
Os ângulos 1 e 5 são congruentes (iguais)
os ângulos 2 e 6 são congruentes (iguais)
os ângulos 3 e 7 são congruentes (iguais)
os ângulos 4 e 8 são congruentes (iguais)
Exercícios Resolvidos
1. Determine o valor de x nas figuras abaixo:
|
x = 40° São ângulos correspondentes. |
|
x + 20° = 180° x = 180° - 20° x = 160° O ângulo x é igual ao ângulo que se forma abaixo do ãngulo de 20°, logo a soma dos dois é igual a 180°. |
2. Determine m, n e r na figura abaixo:
|
m = 84° São ângulos opostos pelo vértice. r = 84° São ângulos correspondentes. r + n = 180° São ângulos suplementares a soma é igual a 180° 84° + n = 180° (substituimos r por 84°) n = 180° - 84° n = 96°
|
3. Sendo m // n, determine o valor de a em graus na figura seguinte: ( // Paralelas)
|
Os ângulos são concorrentes, logo são ângulos iguais. 3b - 11° = 2b + 6° 3b - 2b = 6° + 11° b = 17° Os ângulos são suplementares, logo a soma entre eles é igual a 180°. a + (2b + 6°) = 180° a + 2b + 6° = 180° a + 2(17°) + 6° = 180°(substituimos b por 17°) a + 34° + 6° = 180° a + 40° = 180° a = 180° - 40° a = 140° |
Por: Zmais
Denominamos ângulo a região do plano limitada por duas semirretas de mesma origem. As semirretas recebem o nome de lados do ângulo e a origem delas, de vértice do ângulo. A unidade usual de medida de ângulo, de acordo com o sistema de medidas,...
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br ...
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br ...
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br ...
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br ...