POTENCIAÇÃO E RAIZ QUADRADA EM Z
Matemática

POTENCIAÇÃO E RAIZ QUADRADA EM Z


Professor de Matemática e Ciências Antonio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
Blog HTTP://ensinodematemtica.blogspot.com
extraído do /jmpmat13.blogspot.com

POTENCIAÇÃO E RAIZ QUADRADA EM Z

POTENCIAÇÃO

A potenciação é uma multiplicação de fatores iguais

Exemplos 2³ = 2 .2 .2 = 8

Você sabe também que:

2 é a base
3 é o expoente
8 é a potência ou resultado

1) O expoente é par

a) (+7)² = (+7) . (+7) = +49
b) (-7)² = (-7) . (-7) = +49
c) (+2)⁴ = (+2) . (+2) . (+2) . (+2) = + 16
d) (-2)⁴ = (-2) . (-2) . (-2) . (-2) = + 16

Conclusão : Quando o expoente for par, a potencia é um número positivo

2) Quando o expoente for impar

a) (+4)³ = (+4) . (+4) . (+4) = + 64
b) (-4)³ = (-4) . (-4) . (-4) = - 64
c) (+2)⁵ = (+2) . (+2) . (+2) . (+2) . (+2) = +32
d) (-2)⁵ = (-2) . (-2) . (-2) . (-2) . (-2) = -32

Conclusão : Quando o expoente é impar, a potência tem o mesmo sinal da base.


EXERCÍCIOS

1) Calcule as potências ;

a) (+7)²= (+49)
b) (+4)² = (+16)
c) (+3)² = (+9)
d) (+5)³ = (+125)
e) (+2)³ = (+8)
f) (+3)³ = (+27)
g) (+2)⁴ = (+16)
h) (+2)⁵ = +32
i) (-5)² = +25
j) (-3)² = +9
k) (-2)³ = -8
l) (-5)³ = -125
m) (-1)³ = -1
n) (-2)⁴ = +16
o) (-3)³ = -27
p) (-3)⁴ = +81


2) Calcule as potencias:

a) (-6)² = +36
b) (+3)⁴ = +81
c) (-6)³ = -216
d) (-10)² = +100
e) (+10)² = +100
f) (-3)⁵ = -243
g) (-1)⁶ = +1h) (-1)³ = -1
i) (+2)⁶ = +64
j) (-4)² = +16
k) (-9)² = +81
l) (-1)⁵⁴ = +1
m) (-1)¹³ = -1
n) (-4)³ = -64
o) (-8)² = +64
p) (-7)² = +49

3) Calcule as potencias

a) 0⁷ = 0
b) (-2)⁸ = 256
c) (-3)⁵ = -243
d) (-11)³ = -1331
e) (-21)² = 441
f) (+11)³ = +1331
g) (-20)³ = -8000
h) (+50)² = 2500

4) Calcule o valor das expressões (primeiro as potências)

a) 15 + (+5)² = 40
b) 32 – (+7)² = -17
c) 18 + (-5)² = 43
d) (-8)² + 14 = 78
e) (-7)² - 60 = -11f) 40 – (-2)³ = 48
g) (-2)⁵ + 21 = -11
h) (-3)³ - 13 = -40
i) (-4)² + (-2)⁴ = 32
j) (-3)² + (-2)³ =1
k) (-1)⁶ + (-3)³ = -26
l) (-2)³ + (-1)⁵ = -9


CONVEÇÕES:

Todo o número inteiro elevado a 1 é igual a ele mesmo.

Exemplos:

a) (+7)¹ = +7
b) (-3)¹ = -3

Todo o número inteiro elevado a zero é igual a 1.

Exemplos:
a) (+5)⁰ = 1
b) (-8)⁰= 1

IMPORTANTE!

Observe como a colocação dos parênteses é importante:

a) (-3)² = (-3) . (-3) = +9
b) -3² = -(3 . 3) = -9

Para que a base seja negativa, ela deve estar entre parênteses.



EXERCÍCIOS


1) Calcule as potências:

a) (+6)¹ = +6
b) (-2)¹ = -2c) (+10)¹ = +10
d) (-4)⁰ = +1e) (+7)⁰ = +1
f) (-10)⁰ = +1
g) (-1)⁰ = +1
h) (+1)⁰ = +1
i) (-1)⁴²³ = -1j) (-50)¹ = -50
k) (-100)⁰ = +1
l) 20000⁰ = +1
2) Calcule:

a) (-2)⁶ = 64
b) -2⁶ = -64

Os resultados são iguais ou diferentes?
R: Deferentes

3) Calcule as potências:

a) (-5)² = 25
b) -5² = -25
c) (-7)² = +49
d) -7² = -49
e) (-1)⁴ = +1
f) -1⁴ = -1
4) Calcule o valor das expressões (primeiro as potências):

a) 35 + 5²= 60b) 50 - 4² = -14
c) -18 + 10² = 82
d) -6² + 20 = -16
e) -12-1⁷ = -13
f) -2⁵ - 40 = -72
g) 2⁵ + 0 - 2⁴ = 16
h) 2⁴ - 2² - 2⁰ = 11
i) -3² + 1 - .65⁰ = -9
j) 4² - 5 + 0 + 7² = 60
k) 10 - 7² - 1 + 2³ = -32
l) 3⁴ - 3³ + 3² - 3¹ + 3⁰ = 61


PROPRIEDADES

1) Produto de potência de mesma base: conserva-se a base e somam-se os expoentes.

Observe: a³ . a² = ( a .a .a ) . ( a .a ) = a⁵

Note que: a³ . a² = a³ ⁺ ² = a⁵

Exemplos

a) (-5)⁷ . (-5)² = (-5) ⁷ ⁺ ² = (-5)⁹
b) (+2)³ . (+2)⁴ = (+2)³ ⁺ ⁴ = (+2)⁷

EXERCÍCIOS

1) Reduza a uma só potência:

a) 5⁶ . 5² = 5⁹
b) x⁷. x⁸= x¹⁵a) 2⁴ . 2 . 2⁹ = 2¹⁴
b) x⁵ .x³ . x = x⁹
c) m⁷ . m⁰ . m⁵ = m¹²
d) a . a² . a = a⁴


1) Reduza a uma só potencia:

a) (+5)⁷ . (+5)² = (+5)⁹
b) (+6)² . (+6)³ = (+6)⁵
c) (-3)⁵ . (-3)² = (-3)⁷
d) (-4)² . (-4) = (-4)³
e) (+7) . (+7)⁴ = (+7)⁵
f) (-8) . (-8) . (-8) = (-8)³
g) (-5)³ . (-5) . (-5)² = (-5)⁶
h) (+3) . (+3) . (+3)⁷ = (+3)⁹
i) (-6)² . (-6) . (-6)² = (-6)⁵
j) (+9)³ . (+9) . (+9)⁴ = (+9)⁸


2) Divisão de potências de mesma base:

Observe: a⁵ : a² = (a . a . a . a .a ) : (a .a ) = a³

Note que: a⁵ : a² = a⁵⁻² = a³

Exemplos:

a) (-5)⁸ : (-5)⁶ = (-5)⁸⁻⁶ = (-5)²
b) (+7)⁹ : (+7)⁶ = (+7)⁹⁻⁶ = (+7)³


EXERCÍCIOS

1) Reduza a um asó potência:
a) a⁷ : a³ = a⁴
b) c⁸ : c² = c⁶
c) m³ : m =
d) x⁵ : x⁰ = x⁵
e) y²⁵ : y²⁵ = y⁰= 1f) a¹⁰² : a = a¹⁰¹

2) Reduza a uma só potência:

a) (-3)⁷ : (-3)² = (-3)⁵
b) (+4)¹⁰ : (+4)³ = (+4)⁷
c) (-5)⁶ : (-5)² = (-5)⁴
d) (+3)⁹ : (+3) = (+3)⁸
e) (-2)⁸ : (-2)⁵ = (-2)³
f) (-3)⁷ : (-3) = (-3)⁶
g) (-9)⁴ : (-9) = (-9)³
h) (-4)² : (-4)² = (-4)⁰ = 1

3) Calcule os quocientes:

a) (-5)⁶ : (-5)⁴ = (R: 25)
b) (-3)⁵ : (-3)² = (R: -27 )
c) (-4)⁸ : (-4)⁵= (R: -64)
d) (-1)⁹ : (-1)² = (R: -1)
e) (-7)⁸ : (-7)⁶= (R: 49)
f) (+10)⁶ : (+10)³ = (R: 1000)

3) Potência de Potência:

Obeserve: (a²)³ = a²˙³ = a⁶
Exemplo: [(-2)³]⁴ = (-2)³˙⁴ = (-2)¹²

EXERCÍCIOS

1) Aplique a propriedade de potência de potência.

a) [(-4)² ]³ = (-4)⁶
b) [(+5)³ ]⁴ = (+5)¹²
c) [(-3)³ ]² = (-3)⁶
d) [(-7)³ ]³ = (-7)⁹e) [(+2)⁴ ]⁵ = (+2)²⁰
f) [(-7)⁵ ]³ = (-7)¹⁵
g) [(-1)² ]² = (-1)⁴
h) [(+2)³ ]³ = (+2)⁹
i) [(-5)⁰ ]³ = (-5)⁰ = 1

2) Calcule o valor de:

a) [(+3)³]² = 729
b) [(+5)¹]⁵ = -243
c) [(-1)⁶]² = 1
d) [(-1)³]⁷ = -1e) [(-2)²]³ = 64
f) [(+10)²]² = 10000

4) Potência de um produto.

Obeserve: ( a . b )³ = ( a . b ) . (a . b ) . ( a . b ) = ( a . a . a ) . ( b . b . b ) = a³ . b³

Exemplos: [(-2) . (+5) ] = (-2)³ . (+5)³

EXERCÍCIOS

1) Aplique a propriedade de potência de um produto:

a) [(-2) . (+3)]⁵ = (-2)⁵ . (+3)⁵b) [(+5) . (-7)]³ = (+5)³. (-7)³
c) [(-7) . (+4)]² = (-7)² . (+4)²
d) [(+3) . (+5)]² = (+3)² . (+5)²
e) [(-4)² . (+6)]³ = (-4)⁶ . (+6)³
f) [(+5)⁴ . (-2)³]² = (-4)⁸ . (+6)⁶


RAIZ QUADRADA EXATA DE NÚMEROS INTEIROS


Vamos recordar:

√49 = 7, porque 7² = 49

No conjunto dos números inteiros, a raiz quadrada de 49 pode ser:

+7, poque (+7)² = 49.

-7, porque (-7)² = 49.

Como o resultado de uma operação, deve ser único, vamos adotar o seguinte critério:

Exemplos:

a) +√16 = +4
b) - √16 = -4
c) √9 = 3
d) -√9 = -3

Os números negativos não têm raiz quadrada no conjunto Z

Veja:

a) √-9 = nenhum inteiro, pois (nenhum inteiro)² = -9
b) √-16 = nenhum inteiro, pois (nenhum inteiro)² = -16

EXERCÍCIOS

1) Determine as raízes:

a) √4 = 2
b) √25 = 5
c) √0 = 0
d) -√25 = -5
e) √81 = 9
f) -√81 = -9
g) √36 = 6
h) -√1 = -1
i) √400 = 20
j) -√121 = -11
k) √169 = 13
l) -√900 = -30

2) Calcule caso exista em Z:

a) √4 = 2
b) √-4 = não existe
c) -√4 = -2d) √64 = 8e) √-64 = não existe
f) -√64 = -8
g) -√100 = -10
h) √-100 = não existe

3) Calcule:

a) √25 + √16 = 9
b) √9 - √49 = -4
c) √1 + √0 = 1
d) √100 - √81 + √4 = 3
e) -√36 + √121 + √9 = 8
f) √144 + √169 -√81 = 16





EXEPRESSÕES NÚMERICAS



As expressões devem ser resolvidas obedecendo à seguinte ordem de operações:

1) Potenciação e radiciação;
2) Multiplicação e divisão
3) Adição e subtração

Nessas operações são realizados :

1) parênteses ( )
2) colchetes [ ]
3) chaves { }

exemplos:

calcular o valor das expressões :

1°) exemplo
(-3)² - 4 - (-1) + 5²
9 – 4 + 1 + 25
5 + 1 + 25
6 + 25
31


2°) exemplo

15 + (-4) . (+3) -10
15 – 12 – 10
3 – 10
-7

3°) exemplo

5² + √9 – [(+20) : (-4) + 3]
25 + 3 – [ (-5) +3 ]
25 + 3 - [ -2]
25 +3 +2
28 + 2
30

EXERCÍCIOS

1) Calcule o valor das expressões:

a) 5 + ( -3)² + 1 = 15
b) 10 + (-2)³ -4 = -2
c) 12 – 1 + (-4)² = 27
d) (-1)⁵ + 3 – 9 = -7
e) 18 – (+7) + 3² = 20
f) 6 + (-1)⁵ - 2 = 3
g) (-2)³ - 7 – (-1) = -14
h) (-5)³ - 1 + (-1)⁹ = -127
i) 5⁰ - ( -10) + 2³ = 19
j) (-2)³ + (-3)² - 25 = -24

2) Calcule o valor das expressões:

a) 3 - 4² + 1 = -12
b) 2³ - 2² - 2 = 2
c) (-1)⁴ + 5 - 3² = -3
d) 5⁰ - 5¹ - 5⁰ = -5
e) (-3)². (+5) + 2 = 47
f) (-1)⁷ - (-1)⁸ = -2
g) 5 + (-3)² + 7⁰ = 15
h) √49 + 2³ - 1 = 14

3) Calcule o valor das expressões:

a) (-3)² + 5 = 14
b) (-8)² - (-9)² = -17
c) -72⁰ + (-1)⁸ = 0d) (-12)⁰ + (+12)⁰ = 2
e) 10³ - (-10)² - 10⁰ = 899
f) (-7)² + (-6)² - (-1)² = 84
g) (-1)⁶ + (+1)⁵ + (-1)⁴ + (+1)³ = 4
h) 2⁶ - 2⁵ - 2⁴ - 2³ - 2² - 2 = 2

4) Calcule o valor das expressões:

a) (-3) . (+7) + (-8) . (-3) = 3
b) (-3)³ + (+2)² - 7 = -30
c) 8 + (-3 -1)² = 24
d) (-2 + 6)³ : (+3 – 5)² = 16
e) –(-5)² + (-7 + 4) = -28
f) (-2)⁶ + (+5) . (-2) = 54

5) Calcule o valor das expressões:

a) (-3)³ . (-2)² + (3) + 5⁰ = -110
b) (-1)³ + 3 + (+2) . (+5) = 12
c) (-2) . (-7) + (-3)² = 23
d) 2 . (-5)² - 3 . (-1)³ + 4 = 57
e) –[ -1 + (-3) . (-2)]²
f) –(5 – 7)³ - [ 5 - 2² - (4 – 6)] = 5
g) (-3 + 2 – 1)³ - ( -3 + 5 – 1)⁸ + 3 = -6
h) 8 – [ -7 + )-1) . (-6) + 4]²
i) 14 – [(-1)³ . (-2)² + (-35) : (+5)] = 25
j) 5³ - [ 10 + (7 -8)² ]² - 4 + 2³ = 8
k) (-1)⁸ + 6⁰ - [15 + (-40) : (-2)³ ] = -18
l) -3 –{ -2 – [(-35) : (+5) + 2² ]} = -4

6) Calcule o valor das expressões:

a) (- 3 + 5 + 2) : (-2) = -2
b) (+3 – 1)² - 15 = -11
c) (-2)³ - (-1 + 2)⁵ = -9
d) 40 : (-1)⁹ + (-2)³ - 12 = -60
e) 10 – [5 – (-2) + (-1)] = 4
f) 2 – { 3 + [ 4 – (1 – 2) + 3 ] – 4} = -5
g) 15 – [ (-5)² - (10 - 2³ ) ] = -8
h) 13 – [(-2) – (-7) + (+3)² ] = -1
i) 7² - [ 6 – (-1)⁵ - 2²] = 46
j) 2³ - [(-16) : (+2) – (-1)⁵] = 15
k) 50 : { -5 + [ -1 –(-2)⁵ : (-2)³ ]} = -5

7) Calcule o valor das expressões:

a) 10 + (-3)² = 19
b) (-4)² - 3 = 13
c) 1 + (-2)³ = -7
d) -2 + (-5)² = 23
e) (-2)² + (-3)³ = -23
f) 15 + (-1)⁵ - 2 = 12g) (-9)² -2 – (-3) = 82
h) 5 + (-2)³ + 6 = 3

8) Calcule o valor das expressões:

a) 5 – { +3 – [(+2)² -(-5)² + 6 – 4 ]} = -17
b) 15 – { -3 + [(5 – 6)² . (9 -8 ) ² + 1]} = 16
c) 18 – { 6 – [ -3 – (5 – 4) – (7- 9)³ ] – 1 } = 17
d) -2 + { -5 –[ -2 – (-2)³ - 3- (3 -2 )⁹ ] + 5 } = -4
e) 4 – {(-2)² . (-3) – [ -11 + (-3) . (-4)] – (-1)} = 16

Exercícios em forma de teste:

1) O resultado de (-1001)² é:
a) 11 011
b) -11 011
c) 1 002 001 X
d) -1 002 001

2) O valor da expressão 2⁰ - 2¹ - 2² é:

a) -4
b) -5 x
c) 8
d) 0

3) O valor da expressão (-10)² - 10² é:

a) 0 x
b) 40
c) -20
d) -40

4) O valor da expressão √16 - √4 é

a) 2 x
b) 4
c) 6
d) 12

5) O valor da expressão 10 + √9 – 1 é:

a) 14
b) 18
c) 12 x
d) 20

6) O valor da expressão (-4)⁴ - (-4) é :

a) 20
b) -20
c) 252
d) 260 x
7) O valor da expressão (-2)⁴ + (-9)⁰ - (-3)² é :

a) 8 x
b) 12
c) 16
d) -26

8) O valor da expressão (-7)² + (+3) . (-4) – (-5) é :

a) 7
b) 37
c) 42 x
d) 47

9) A expressão (-7)¹⁰ : (-7)⁵ é igual a:

a) (-7)⁵ x
b) (-7)²
c) (-7)¹⁵
d) (-1)²

10) O valor da expressão –[-2 + (-1) . (-3)]² é :

a) -1 x
b) -4
c) 1
d) 4

11) O valor da expressão numérica -4² + (3 -5) . (-2)³ + 3² - (-2)⁴ é

a) 7
b) 8
c) 15
d) -7 x




- Expressão Numérica C/ Potencia E Raiz
POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO Consideremos uma multiplicação em que todos os fatores são iguais Exemplo 5x5x5, indicada por 5³ ou seja , 5³= 5x5x5=125 onde : 5 é a base (fator que se repete) 3 é o expoente ( o número de vezes...

- ExpressÕes NÚmericas
Para resolver uma expressão numérica, efetuamos as operações obedecendo à seguinte ordem : 1°) Potenciação e radiciação 2°) Multiplicações e divisões 3°) Adições e Subtrações EXEMPLOS 1) 5 + 3² x 2 = = 5 + 9 x 2 = = 5 + 18 = = 23 2)...

- ExpressÕes NumÉricas
EXPRESSÕES NUMÉRICAS Para resolver uma expressão numérica, efetuamos as operações obedecendo à seguinte ordem : 1°) Potenciação e radiciação 2°) Multiplicações e divisões 3°) Adições e Subtrações EXEMPLOS 1) 5 + 3² x 2 = = 5 + 9...

- Conjunto Dos NÚmeros Racionais Relativos
Chama-se número racional todo o número que pode ser escrito em forma de fração, São exemplos de números racionais; “ Os números fracionários positivos; + 5/7, +1/3, +7/2, +9/4 “Os números fracionários negativos; -5/7, -1/3, -7/2, -9/4 É...

- PotenciaÇÃo E RadiciaÇÃo
Consideremos uma multiplicação em que todos os fatores são iguais Exemplo 5x5x5, indicada por 5³ ou seja , 5³= 5x5x5=125 onde : 5 é a base (fator que se repete) 3 é o expoente ( o número de vezes que repetimos a base) 125 é a potência ( resultado...



Matemática








.