CONJUNTO DOS NÚMEROS RACIONAIS RELATIVOS
Matemática

CONJUNTO DOS NÚMEROS RACIONAIS RELATIVOS


Chama-se número racional todo o número que pode ser escrito em forma de fração,
São exemplos de números racionais;

“ Os números fracionários positivos;

+ 5/7, +1/3, +7/2, +9/4

“Os números fracionários negativos;

-5/7, -1/3, -7/2, -9/4

É concluir que todo número inteiro é também racional,

Veja:

a) O número 8 pode ser escrito como 8/1, logo 8 também é um número racional.

b) O número inteiro (-8) pode ser escrito como -8/1, logo (-8) também é um número racional

c) O número inteiro 0 pode ser escrito como 0/1, logo 0 é também um número racional.

O conjunto dos números racionais é representado pela letra Q sendo formado pelos números inteiros e pelos números fracionários.


CONJUNTO Q

a) números inteiros positivos e negativos
b) número zero
c) números fracionários , positivos e negativos

CONVEM DESTACAR QUE:

1) O conjunto Q é infinito.


2) Os números racionais positivos podem ser escritos sem o sinal de +

Exemplo:

+3/7 escreve-se simplismente 3/7


3) Números opostos ou simétricos

Exemplos:

a) +3/8 e -3/8 são opostos
b) -1/2 e +1/2 são opostos

4) Regra de sinais

A indicação de uma divisão pode ser feita por meio de uma fração. Então, para saber o sinal do número racional, basta aplicar a regra de sinais da divisão.

Exemplos:

a) (-3) : (+5) =
-3/+5 =
-3/5

b) (-8) : (-7) =
-8/-7 =
+8/7 =
8/7



NÚMEROS DECIMAIS


Um número racional também pode ser representado por um número exato ou periódico.

Exemplos:

a) 7/2 = 3,5
b) -4/5 = -0,8
c) 1/3 = 0,333.......
d) 4/9 = 0,444......



REPRESENTAÇÃO GEOMÉTRICA

Observe que os números racionais podem ser representados por pontos de uma reta, usando-se o mesmo processo de representação dos inteiros.


_-3___/____-2___/____-1_______0__/_____1_____/__2_______3__
.....-5/2........-3/2...................1/5.............5/3


Os pontos que estão à direita do zero chamam-se positivos.
Os negativos estão à esquerda do zero

Dados dois números quaisquer, o que está à direita é maior deles, e o que está a esquerda, o menor deles.

Na figura vemos que :

a) 1/5 > -3/2
b) -5/2 < -3/2



EXERCÍCIOS
1) Aplique a regra de sinais para a divisão e dê o resultado
a) -5/+9 = (R: -5/9)
b) -2/-3 = (R: 2/3)
c) +3/+4 = (R: ¾ )
d) -9/+5 = (R: -9/5)
e) +7/-5 = (R: -7/5)
f) -8/7 = (R: -8/7)

2) Escreva os números racionais na forma irredutiveil:

a) 10/4 = (R: 5/2)
b) -12/48 = (R: -1/4)
c) -7/35 = (R: -1/5)
d) 18/-36 = (R: -1/2)
e) -75/50 = (R: -3/2)
f) -25/100 = (R: -1/4)
g) 11/99 = (R: 1/9)
h) -4/128 = (R: -1/32)

3) Transforme as frações seguintes em números inteiros:

a) -12/6 = (R: -2)
b) -32/8 = (R: -4)
c) 20/10 = (R: 2)
d) -17/1 = (R: -17)
e) -54/18 = (R: -3)
f) -45/15 = (R: -3)
g) 132/11 = (R: -12)

4) Dê o valor de:

a) (5.(-6))/2 = (R: -15)
b) ((-9) . (-8)) / 2 = (R: 36)
c) (2 . (-6) . (-3)) /(9 . (-2)) = (R: -2 )
d) (2 . 0 . 5) / 30 = (R: 0)
e) (6 . (-2) . (-3)) / -9 = (R: -4)
f) (-7 . (-8)) / -14 = (R: -4)
g) (-3 – 7 – 9) /19 = (R: -1)
h) (6 . (-4) . (-5)) /( 3 . (-8)) = (R: -5)


ADIÇÃO E SUBTRAÇÃO EM Q



Para as operações com números racionais relativos são validas as regras operatórias das frações e dos números inteiros relativos.


ADIÇÃO

Para adicionarmos números racionais relativos (na forma de fração) procedemos do seguinte modo:

1) Reduzimos (se necessário) as frações dadas ao mesmo denominador positivo.

2) Somamos os numeradores de acordo com a regra de sinais da adição de inteiros.

EXEMPLOS:

a) (-2/3) + (+1/2) =
-2/3 + 1/2=
(-4 + 3) / 6 =
-1/6

b) (+3/4) + (-1/2) =
3/4 - 1/2 =
(3-2)/ 4 =
1/4

c) (-4/5) + (-1/2) =
-4/5 -1/2 =
(-8 -5) / 10 =
-13/10




EXERCÍCIOS

1) Efetue as adições:

a) (+3/5) + (+1/2) = (R: 11/10)
b) (-2/3) + (+5/4) = (R: 7/12)
c) (-4/9) + (+2/3) = (R: 2/9)
d) (-3/7) + (+2/9) = (R: -13/63)
e) (-1/8) + (-7/8) = (R: -1)
f) (-1/3) + (-1/5) = (R: -8/15)
g) (-1/8) + (5/4) = (R: 9/8)
h) (+1/5) + ( +3/5) = (R: 4/5)

2) Efetue as adições:

a) (-2/5) + 3 = (R: 13/5)
b) (-1/6) + (+2) = (R: 11/6)
c) (-5/3) + (+1) = (R: -2/3)
d) (-4) + (-1/2) = (R: -9/2)
e) (-0,2) + (-1/5) = (R: -2/5)
f) (+0,4) + (+3/5) = (R: 1)
g) (-0,5) + (+0,7) = (R: 1/5 ou 0,2)
h) (-02) + (-1/2) = (R: -7/10)

3) Efetue as seguintes adições:

a) (+5/8) + (+1/2) + ( -2/15) = (R:119/120)
b) (+1/2) + (-1/3) + (+1/5) = (R:11/30)
c) (-1/2) + (-4/10) + (+1/5) = (R: -7/10)
d) (-3/5) + (+2) + (-1/3) = (R: 16/15)



SUBTRAÇÃO

Para encontrarmos a diferença entre dois números racionais, somamos o primeiro com o oposto do segundo

Exemplos

a) (+1/2) – (+1/4) = ½ -1/4 = 2/4 -1/4 = ¼
b) (-4/5) – (-1/2) = -4/5 + ½ = -8/10 + 5/10 = -3/10

Exercícios

1) Efetue as subtrações:

a) (+5/7) – (+2/3) = (R: 1/21)
b) (+2/3) – (+1/2) = (R: 1/6)
c) (+2/3) – (+4/5) = (R: -2/15)
d) (-7/8) – (-3/4) = (R: -1/8)
e) (-2/5) – (-1/4) = (R: -3/20)
f) (-1/2) – (+5/8) = (R: -9/8)
g) (+2/3) – ( (+1/5) = (R: 7/15)
h) (-2/5) – ( +1/2) = (R: -9/10)

2) Efetue as subtrações:

a) (+1/2) – (+5) = (R: -9/2)
b) (+5/7) – (+1) = (R: -2/7)
c) 0 – ( -3/7) = (R: 3/7)
d) (-4) – (-1/2) = (R: -7/2)
e) (+0,3) – (-1/5) = (R: ½)
f) (+0,7) – (-1/3) = 31/30


3) Calcule

a) -1 – ¾ = (R: -7/4)
b) (-3/5) + (1/2) = (R: -1/10)
c) 2 – ½ -1/4 = (R: 5/4)
d) -3 -4/5 + ½ = (R: -33/10)
e) 7/3 + 2 -1/4 = (R: 49/12)
f) -3/2 + 1/6 + 2 -2/3 = (R: 0)
g) 1 – ½ + ¼ - 1/8 = (R:5/8)
h) 0,2 + ¾ + ½ - ¼ = (R:6/5)
i) ½ + (-0,3) + 1/6 = (R:11/30)
j) 1/5 + 1/25 + (-0,6) = (R: 1/10)

4) Calcule o valor de cada expressão:

a) 3/5 – 1 – 2/5 = (R: -4/5)
b) 3/5 – 0,2 + 1/10 = (R: ½)
c) -3 – 2 – 4/3 = (R: -19/3)
d) 4 – 1/10 + 2/5= (R: 43/10)
e) 2/3 – ½ -5 = (R: 29/6)
f) -5/12 – 1/12 + 2/3 = (R: 1/6)

5) Calcule o valor de cada expressões:

a) -1/3 + 2/9 – 4/3 = (R: -13/9)
b) -4 + ½ - 1/6 = (R:-11/3)
c) 0,3 + ½ - ¾ = (R: 1/20)
d) 1 + ¼ - 3/2 + 5/8 = (R: 3/8)
e) 0,1 + 3/2 – ¼ + 2 = (R: 67/20)
f) ¾ + 0,2 – 5/2 – 0,5 = ( R: - 41/20)

6) Calcule o valor de cada expressão

a) 1/2 – (-3/5) + 7/10 = (R: 9/5)
b) -(-1) – (- 4/3) + 5/6 = (R: 19/6)
c) 2 – ( - 2/3 – ¼) + 0,1 = (R: 181/60)
d) ( -1 + ½) – ( -1/6 + 2/3) = (R: -1)
e) 2 – [ 3/5 – ( -1/2 + ¼ ) ] = (R: 23/20)
f) 3 – [ -1/2 – (0,1 + ¼ )] = (R: 77/20)
g) (1/3 + ½) – (5/6.- ¾) = (R: ¾)
h) (5/2 – 1/3 – ¾ ) – (1/2 + 1) = (R: -1/12)
i) (1/4 + ½ + 2 ) + (-1/6 + 2/3) = (R: 13/4)
j) (-0,3 + 0,5 ) – ( -2 - 4/5) = (R: 3)
k) (1/6 + 2/3) – (4/10 – 3/5) + 1/3 = (R: 41/30)
l) 0,2 + (2/3 – ¼) – ( -7/12 + 4/3) = (R: -2/15)
m) (1 – ¼) + (2 + ½) – (1 - 1/3) – ( 2 – ¼ ) = (R: 5/6 )



MULTIPLICAÇÃO E DIVISÃO EM Q



MULTIPLICAÇÃO


Para multiplicarmos números racionais, procedemos do seguinte modo:

1) multiplicamos os numeradores entre si.

2) multiplicamos os denominadores entre si.

3) aplicamos as regras de sinais da multiplicação em Z.


EXEMPLOS :

a) (+1/7) . (+2/5) = +2/35

b) (-4/3) . (-2/7) = +8/21

c) (+1/4) . (-3/5) = -3/20

d) (-4) . (+1/5) = -4/5



EXERCICIOS

1) Efetue as multiplicações

a) (+1/5) . (+4/3) = (R: +4/15)
b) (+4/9) . ( -7/5) = (R: -28/45)
c) (-3/2) . ( -5/7) = (R: 15/14)
d) (-1/5) . (+1/4) = (R: -1/20)
e) (+2/3) . (-1/3) = (R: -2/9)
f) (-5/8) . (-4/3) = (R: +5/6)
g) (+4/5) . (-1/3) = (R: -4/15)
h) (-3/5) . (-7/4) = (R: +21/20)

2) Efetue as multiplicações

a) (+3) . (-1/5) = (R: -3/5)
b) (+2) . (+4/11) = (R: +8/11)
c) (-1) . (-3/10) = (R: 3/10)
d) (-4/7) . (+5) = (R: -20/7)
e) (-2/5) . (-3) = (R: +6/5)
f) (+2/9) . 0 = (R: 0)

3) Efetue as multiplicações

a) (-1/2) . (+2/3) . (-3/7) = (R: +1/7)
b) (-2/5) . (-3/2) . (-8/5) = (R: -24/25)
c) (-1/2) . (-1/2) . (-1/2) = (R: -1/8)
d) (-1) . (+5/3) . (+3/5) = (R: -1)
e) (+7) . (-1/7) . (+7) = (R: -7)

4) Efetue as multiplicações:

a) (-2/3) . (+1/5) = (R: -2/15)
b) (-7/3) . (-3/7) = (R: 1)
c) (1/5) . (-7/3) = (R: -7/15)
d) (-2/9) . 5/7 = (R: -10/63)
e) (-3/4) . (-5/7) = (R: 15/28)
f) (-2) . (-1/6) = (R: 1/3)
g) 5 . (-4/7) = (R: -20/7)
h) -2 . (-1/3) = (R: 2/3)

5) Efetue as multiplicações:

a) (1/4 . 3/5) . 2/7 = (R: 3/70)
b) (2 – ¼) . (-2/3) = (R: -7/6)
c) (-3/4) . (+1/5) . (-1/2) = (R: 3/40)
d) 4. ( 1 – 7/5) = (R: -8/5)
e) (-3/5) . (-2) . (7/5) = (R: 42/25)
f) ( 1 – 4/5) . ( 1 – ½) = (R: 1/10)




DIVISÃO


Para Calcularmos o quociente de dois números racionais relativos, em que o segundo é diferente de zero, procedemos do seguinte modo:

1) multiplicamos o dividendo pelo inverso do divisor.

2) aplicamos as regras da multiplicação de números racionais.

Exemplos

a) ( -7/9 ) : (+5/2) = (-7/9) . (+2/5) = -14/45
b) (-1/4) : (-3/7) = ( -1/4) . (-7/3) = +7/12
c) (+3/5) : (-2) = (+3/5) . -1/2) = -3/10

EXERCICIOS

1) Efetue as divisões:

a) (+1/3) : (+2/3) = (R: +3/6 ou + 1/3)
b) (+4/7) : ( -2/5) = (R: -20/14 ou -10/7)
c) (-3/5) : (-3/7) = (R: +21/15 ou +7/5)
d) (-3/7) : (+2/3) = (R: -9/14)
e) (+1/9) : (-7/5) = (R: -5/63)
f) (+1/2) : (-3/4) = (R: -4/6 ou -2/3)
g) (-3/4) : (-3/4) = (R: +1)
h) (-7/5) : (+1/2) = (R: -14/5)

3) Efetue as divisões:

a) (+5) : (-3/2) = (R: -10/3)
b) (-4) : (-3/5) = (R: +20/3)
c) (-3) : (-2/9) = (R: +27/2)
d) (-5/2) : (+2) = (R: -5/4)
e) (+4/3) : (-2) = (R: -4/3)
f) (-3/5) : (+0,1) = (R: -6)

4) Efetue as divisões:

a) 2/3 : 3/16 = (R: 32/9)
b) 2/5 : (-3/4) = (R: -8/15)
c) (-4/5) : (-3/5) = ( R: 20/15 ou 4/3)
d) (-4/9) : (-3) = (R: 4/27)
e) (-7/8) : 2/3 = (R: -21/16)
f) 0 : (-4/7) = (R: 0)



POTENCIAÇÃO E RAIZ QUADRADA EM Q




POTENCIAÇÃO

A potenciação é uma multiplicação de fatores iguais

Exemplos

a) (+1/5)² = (+1/5) . (+1/5) = +1/25
b) (-2/3)² = (-2/3) . (-2/3) = +4/9
c) ((-1/2)³ = (-1/2) . (-1/2) . (-1/2) = -1/8

Observações:

1) Todo número elevado a expoente zero é igual a 1.

Exemplos:

a) (+5/9)⁰ = 1
b) (-3/7)⁰ = 1

2) Todo número elevado a expoente um é igual ao próprio número.

a) (+3/8)¹ = +3/8

b) (-3/4)¹ = -3/4

EXERCICIOS

1) Calcule as potências:

a) (+1/3)² = (R: +1/9)
b) (-1/5)² = (R: +1/25)
c) (+2/3)² = (R: +4/9)
d) (-3/7)² = (R: +9/49)
e) (+4/5)² = (R: +16/25)
f) (-3/2)² = (R: +9/4)
g) (-8/3)² = (R: 64/9)
h) (-1/4)² = (R: 1/16)
i) (-2/3)³ = (R: 8/27)

2) Calcule as potências:

a) (+1/5)¹ = (R: +1/5)
b) (-3/7)¹ = (R: -3/7)
c) (+2/9)⁰ = (R: +1)
d) (-1/3)³ = (R: -1/27)
e) (+3/2)⁴ = (R: +81/16)
f) (-1/2)⁴= (R: +1/16)
g) (-2/7)⁰ = (R: +1)
h) (-1/6)¹ = (R: -1/6))
i) (-5/9)⁰ = (R: +1)

3) Calcule as expressões:

a) (-1/2)² + 2/5 = (R: 13/20)
b) (-1/2)³ + 1 = (R: 7/8)
c) (2/5)² - (-1/2)³ = (R: 57/200)
d) 2 + (-1/3)² - (1/2) = (R: 29/18)
e) 1 + ( (+2/5) – ( ½)² = (R: 23/20)


EXPOENTE NEGATIVO

Observe o exemplo:

2² : 2⁵ =
2² / 2⁵ =
1/ 2³

Pela regra de divisão de potências de mesma base sabemos que:

2² : 2⁵ =
2²⁻⁵ =
2⁻³

Então 2⁻³ = 1/2³

Conclusão: Todo o número diferente de zero a um expoente negativo é igual ao inverso do mesmo número com expoente positivo.

Exemplos:

a) 5⁻² = 1/5² = 1/25

b) 2⁻³ = 1/2³= 1/8



EXERCICIOS

1) Calcule as potências:

a) 4⁻² = (R: 1/16)
b) 4⁻³ = ( R: 1/16)
c) 5⁻¹ = (R: 1/5)
d) 3⁻³ = (R: 1/27)
e) 10⁻² = (R: 1/100)
f) 10⁻³ = (R: 1/1000)
g) 2⁻⁵ = (R: 1/32)
h) 7⁻¹ = (R: 1/7)
i) 1⁻¹⁸ = (R: 1)

2) Calcular as potências

a) (-5)⁻² = (R: 1/25)
b) (-3)⁻⁴ = (R: 1/81)
c) (-2)⁻⁵ = (R: -1/32)
d) (-5)⁻³ = (R: -1/125)
e) (-1)⁻⁴ = (R: 1)
f) (-1)⁻⁵ = (R: -1)


2) Calcule as potências

a) (3/7)⁻² = (R: 49/9)
b) (2/5)⁻¹ = (R: 5/2)
c) (1/3)⁻³ = (R: 27)
d) (-5/4)⁻³ = (R: 16/25)
e) (-1/3)⁻² = (R: 9)
f) (-2/5)⁻³ = (R: -125/8)



RAIZ QUADRADA


Extraímos separadamente a raiz do numerador e a raiz do denominador,

Exemplos

a) √16/49 = 4/7

b) √25/9 = 5/3

Obs: Os números racionais negativos não têm raiz quadrada em Q

Exemplo √-4/3
POTENCIAÇÃO

A potenciação é uma multiplicação de fatores iguais

Exemplos 2³ = 2 .2 .2 = 8

Você sabe também que:

2 é a base
3 é o expoente
8 é a potência ou resultado

1) O expoente é par

a) (+7)² = (+7) . (+7) = +49
b) (-7)² = (-7) . (-7) = +49
c) (+2)⁴ = (+2) . (+2) . (+2) . (+2) = + 16
d) (-2)⁴ = (-2) . (-2) . (-2) . (-2) = + 16

Conclusão : Quando o expoente for par, a potencia é um número positivo

2) Quando o expoente for impar

a) (+4)³ = (+4) . (+4) . (+4) = + 64
b) (-4)³ = (-4) . (-4) . (-4) = - 64
c) (+2)⁵ = (+2) . (+2) . (+2) . (+2) . (+2) = +32
d) (-2)⁵ = (-2) . (-2) . (-2) . (-2) . (-2) = -32

Conclusão : Quando o expoente é impar, a potência tem o mesmo sinal da base.


EXERCÍCIOS

1) Calcule as potências ;

a) (+7)²= (R: +49)
b) (+4)² = (R: +16)
c) (+3)² = (R: +9)
d) (+5)³ = (R: +125)
e) (+2)³ = (R: +8)
f) (+3)³ = (R: +27)
g) (+2)⁴ = (R: +16)
h) (+2)⁵ = (R: +32)
i) (-5)² = (R: +25)
j) (-3)² = (R: +9)
k) (-2)³ = (R: -8)
l) (-5)³ = (R: -125)
m) (-1)³ = (R: -1)
n) (-2)⁴ = (R: +16)
o) (-3)³ = (R: -27)
p) (-3)⁴ = (R: +81)


2) Calcule as potencias:

a) (-6)² = (R: +36)
b) (+3)⁴ = (R: +81)
c) (-6)³ = (R: -216)
d) (-10)² = (R: +100)
e) (+10)² = (R: +100)
f) (-3)⁵ = (R: -243)
g) (-1)⁶ = (R: +1)h) (-1)³ = (R: -1)
i) (+2)⁶ = (R: +64)
j) (-4)² = (R: +16)
k) (-9)² = (R: +81)
l) (-1)⁵⁴ = (R: +1)
m) (-1)¹³ = (R: -1)
n) (-4)³ = (R: -64)
o) (-8)² = (R: +64)
p) (-7)² = (R: +49)

3) Calcule as potencias

a) 0⁷ = (R: 0)
b) (-2)⁸ = (R: 256)
c) (-3)⁵ = (R: -243)
d) (-11)³ = (R: -1331)
e) (-21)² = (R: 441)
f) (+11)³ = (R: +1331)
g) (-20)³ = (R: -8000)
h) (+50)² = (R: 2500)

4) Calcule o valor das expressões (primeiro as potências)

a) 15 + (+5)² = (R: 40)
b) 32 – (+7)² = (R: -17)
c) 18 + (-5)² = (R: 43)
d) (-8)² + 14 = (R: 78)
e) (-7)² - 60 = (R: -11)f) 40 – (-2)³ = (R: 48)
g) (-2)⁵ + 21 = (R: -11)
h) (-3)³ - 13 = (R: -40)
i) (-4)² + (-2)⁴ = (R: 32)
j) (-3)² + (-2)³ = (R: 1)
k) (-1)⁶ + (-3)³ = (R: -26)
l) (-2)³ + (-1)⁵ = (R: -9)


CONVEÇÕES:

Todo o número inteiro elevado a 1 é igual a ele mesmo.

Exemplos:

a) (+7)¹ = +7
b) (-3)¹ = -3

Todo o número inteiro elevado a zero é igual a 1.

Exemplos:
a) (+5)⁰ = 1
b) (-8)⁰= 1

IMPORTANTE!

Observe como a colocação dos parênteses é importante:

a) (-3)² = (-3) . (-3) = +9
b) -3² = -(3 . 3) = -9

Para que a base seja negativa, ela deve estar entre parênteses.



EXERCÍCIOS


1) Calcule as potências:

a) (+6)¹ = (R: +6)
b) (-2)¹ = (R: -2)c) (+10)¹ = (R: +10)
d) (-4)⁰ = (R: +1)e) (+7)⁰ = (R: +1)
f) (-10)⁰ = (R: +1)
g) (-1)⁰ = (R: +1)
h) (+1)⁰ = (R: +1)
i) (-1)⁴²³ = (R: -1)j) (-50)¹ = (R: -50)
k) (-100)⁰ = (R: +1)
l) 20000⁰ = (R: +1)
2) Calcule:

a) (-2)⁶ = (R: 64)
b) -2⁶ = (R: -64)

Os resultados são iguais ou diferentes?
R: Deferentes

3) Calcule as potências:

a) (-5)² = (R: 25)
b) -5² = (R: -25)
c) (-7)² = (R: +49)
d) -7² = (R: -49)
e) (-1)⁴ = (R: +1)
f) -1⁴ = (R: -1)
4) Calcule o valor das expressões (primeiro as potências):

a) 35 + 5²= (R: 60)b) 50 - 4² = (R: -14)
c) -18 + 10² = (R: 82)
d) -6² + 20 = (R: -16)
e) -12-1⁷ = (R: -13)
f) -2⁵ - 40 = (R: -72)
g) 2⁵ + 0 - 2⁴ = (R: 16)
h) 2⁴ - 2² - 2⁰ = (R: 11)
i) -3² + 1 - .65⁰ = (R: -9)
j) 4² - 5 + 0 + 7² = (R: 60)
k) 10 - 7² - 1 + 2³ = (R: -32)
l) 3⁴ - 3³ + 3² - 3¹ + 3⁰ = (R: 61)


PROPRIEDADES

1) Produto de potência de mesma base: conserva-se a base e somam-se os expoentes.

Observe: a³ . a² = ( a .a .a ) . ( a .a ) = a⁵

Note que: a³ . a² = a³ ⁺ ² = a⁵

Exemplos

a) (-5)⁷ . (-5)² = (-5) ⁷ ⁺ ² = (-5)⁹
b) (+2)³ . (+2)⁴ = (+2)³ ⁺ ⁴ = (+2)⁷

EXERCÍCIOS

1) Reduza a uma só potência:

a) 5⁶ . 5² = 5⁹
b) x⁷. x⁸= x¹⁵a) 2⁴ . 2 . 2⁹ = 2¹⁴
b) x⁵ .x³ . x = x⁹
c) m⁷ . m⁰ . m⁵ = m¹²
d) a . a² . a = a⁴


1) Reduza a uma só potencia:

a) (+5)⁷ . (+5)² = [R: (+5)⁹]
b) (+6)² . (+6)³ = [R: (+6)⁵]
c) (-3)⁵ . (-3)² = [R: (-3)⁷]
d) (-4)² . (-4) = [R: (-4)³]
e) (+7) . (+7)⁴ = [R: (+7)⁵]
f) (-8) . (-8) . (-8) = [R: (-8)³]
g) (-5)³ . (-5) . (-5)² = [R: (-5)⁶]
h) (+3) . (+3) . (+3)⁷ = [R: (+3)⁹]
i) (-6)² . (-6) . (-6)² = [R: (-6)⁵]
j) (+9)³ . (+9) . (+9)⁴ = [R: (+9)⁸]


2) Divisão de potências de mesma base:

Observe: a⁵ : a² = (a . a . a . a .a ) : (a .a ) = a³

Note que: a⁵ : a² = a⁵⁻² = a³

Exemplos:

a) (-5)⁸ : (-5)⁶ = (-5)⁸⁻⁶ = (-5)²
b) (+7)⁹ : (+7)⁶ = (+7)⁹⁻⁶ = (+7)³


EXERCÍCIOS

1) Reduza a um asó potência:
a) a⁷ : a³ = (R: a⁴)
b) c⁸ : c² = (R: c⁶)
c) m³ : m = (R: m² )
d) x⁵ : x⁰ = (R: x⁵)
e) y²⁵ : y²⁵ = (R: y⁰= 1)
f) a¹⁰² : a = (R: a¹⁰¹)

2) Reduza a uma só potência:

a) (-3)⁷ : (-3)² = [ R: (-3)⁵]
b) (+4)¹⁰ : (+4)³ = [R: ( +4)⁷]
c) (-5)⁶ : (-5)² = [R: (-5)⁴]
d) (+3)⁹ : (+3) = [R: (+3)⁸]
e) (-2)⁸ : (-2)⁵ = [R: (-2)³]
f) (-3)⁷ : (-3) = [R: (-3)⁶]
g) (-9)⁴ : (-9) = [R: (-9)³]
h) (-4)² : (-4)² = [R: (-4)⁰ = 1]

3) Calcule os quocientes:

a) (-5)⁶ : (-5)⁴ = (R: 25)
b) (-3)⁵ : (-3)² = (R: -27 )
c) (-4)⁸ : (-4)⁵= (R: -64)
d) (-1)⁹ : (-1)² = (R: -1)
e) (-7)⁸ : (-7)⁶= (R: 49)
f) (+10)⁶ : (+10)³ = (R: 1000)

3) Potência de Potência:

Obeserve: (a²)³ = a²˙³ = a⁶
Exemplo: [(-2)³]⁴ = (-2)³˙⁴ = (-2)¹²

EXERCÍCIOS

1) Aplique a propriedade de potência de potência.

a) [(-4)² ]³ = (-4)⁶
b) [(+5)³ ]⁴ = (+5)¹²
c) [(-3)³ ]² = (-3)⁶
d) [(-7)³ ]³ = (-7)⁹e) [(+2)⁴ ]⁵ = (+2)²⁰
f) [(-7)⁵ ]³ = (-7)¹⁵
g) [(-1)² ]² = (-1)⁴
h) [(+2)³ ]³ = (+2)⁹
i) [(-5)⁰ ]³ = (-5)⁰ = 1

2) Calcule o valor de:

a) [(+3)³]² = 729
b) [(+5)¹]⁵ = -243
c) [(-1)⁶]² = 1
d) [(-1)³]⁷ = -1e) [(-2)²]³ = 64
f) [(+10)²]² = 10000

4) Potência de um produto.

Obeserve: ( a . b )³ = ( a . b ) . (a . b ) . ( a . b ) = ( a . a . a ) . ( b . b . b ) = a³ . b³

Exemplos: [(-2) . (+5) ] = (-2)³ . (+5)³

EXERCÍCIOS

1) Aplique a propriedade de potência de um produto:

a) [(-2) . (+3)]⁵ = (-2)⁵ . (+3)⁵b) [(+5) . (-7)]³ = (+5)³. (-7)³
c) [(-7) . (+4)]² = (-7)² . (+4)²
d) [(+3) . (+5)]² = (+3)² . (+5)²
e) [(-4)² . (+6)]³ = (-4)⁶ . (+6)³
f) [(+5)⁴ . (-2)³]² = (-4)⁸ . (+6)⁶


RAIZ QUADRADA EXATA DE NÚMEROS INTEIROS


Vamos recordar:

√49 = 7, porque 7² = 49

No conjunto dos números inteiros, a raiz quadrada de 49 pode ser:

+7, poque (+7)² = 49.

-7, porque (-7)² = 49.

Como o resultado de uma operação, deve ser único, vamos adotar o seguinte critério:

Exemplos:

a) +√16 = +4
b) - √16 = -4
c) √9 = 3
d) -√9 = -3

Os números negativos não têm raiz quadrada no conjunto Z

Veja:

a) √-9 = nenhum inteiro, pois (nenhum inteiro)² = -9
b) √-16 = nenhum inteiro, pois (nenhum inteiro)² = -16

EXERCÍCIOS

1) Determine as raízes:

a) √4 = (R: 2)
b) √25 = (R: 5)
c) √0 = (R: 0)
d) -√25 = (R: -5)
e) √81 = (R: 9)
f) -√81 = (R: -9)
g) √36 = (R: 6)
h) -√1 = (R: -1)
i) √400 = (R: 20)
j) -√121 = (R: -11)
k) √169 = (R: 13)
l) -√900 = (R: -30)

2) Calcule caso exista em Z:

a) √4 = (R: 2)
b) √-4 = (R: não existe)
c) -√4 = (R: -2)d) √64 = (R: 8)e) √-64 = (R: não existe)
f) -√64 = (R: - 8)
g) -√100 = (R:-10)
h) √-100 = (R: não existe)

3) Calcule:

a) √25 + √16 = 9
b) √9 - √49 = -4
c) √1 + √0 = 1
d) √100 - √81 + √4 = 3
e) -√36 + √121 + √9 = 8
f) √144 + √169 -√81 = 16
http://jmpmat13.blogspot.com/




- Expressão Numérica C/ Potencia E Raiz
POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO Consideremos uma multiplicação em que todos os fatores são iguais Exemplo 5x5x5, indicada por 5³ ou seja , 5³= 5x5x5=125 onde : 5 é a base (fator que se repete) 3 é o expoente ( o número de vezes...

- Potenciação E Radiciação
Consideremos uma multiplicação em que todos os fatores são iguais Exemplo 5x5x5, indicada por 5³ ou seja , 5³= 5x5x5=125 onde : 5 é a base (fator que se repete) 3 é o expoente ( o número de vezes que repetimos a base) 125 é a potência ( resultado...

- PotenciaÇÃo E Raiz Quadrada Em Z
Professor de Matemática e Ciências Antonio Carlos Carneiro Barroso Colégio Estadual Dinah Gonçalves email [email protected] HTTP://ensinodematemtica.blogspot.com extraído do /jmpmat13.blogspot.com POTENCIAÇÃO E RAIZ QUADRADA EM Z ...

- Conjunto Do NÚmero Racionais
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br www.accbarrosogestar.wordpress.com ...

- NÚmeros Racionais
Professor de Matemática e Ciências Antonio Carlos Carneiro Barroso Colégio Estadual Dinah Gonçalves www.accbarrosogestar.wordpress.com email [email protected] HTTP://ensinodematemtica.blogspot.com.br extraído do jmpmat13.blogspot.comCONJUNTO...



Matemática








.