Matemática
Teorema de D’Alembert
Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br
WWW.profantoniocarneiro.com
matemática, os teoremas, as fórmulas, os postulados sempre recebem o nome de seus inventores e D’Alembert foi um desses, matemático e físico, foi um dos oficiais na revolução Francesa responsável pelas publicações solenes, anunciava a guerra e plocamava a paz.
Além disso, vários teoremas, tanto na física como na matemática, levaram o seu nome, na matemática podemos destacar no estudo dos polinômios o Teorema de D’Alembert, que diz:
Todo polinômio P(x) quando dividido por um binômio do tipo x – a, resultará em uma divisão exata, ou seja, terá resto igual a zero se, e somente se, a constante a for raiz do polinômio P(x).Exemplo: Sem efetuar as divisões, prove que o polinômio P(x) = x
4 - 4x
3 + 4x
2 - 4x +3 é divisível por x - 3 e x - i.
As divisões dadas favorecem a aplicação do Teorema de D’Alembert, dessa forma podemos afirmar que: a constante a será raiz do polinômio P(x) se, somente se, o resto da divisão for igual a zero. Dessa forma, basta aplicarmos o Teorema do Resto.
Para divisor igual a x – 3, a = 3.
P(3) = 3
4 – 4 . 3
3 + 4 . 3
2 – 4 . 3 + 3
P(3) = 81 – 4 . 27 + 4 . 9 – 12 + 3
P(3) = 81 – 108 + 36 – 12 + 3
P(3) = -27 + 36 – 12 + 3
P(3) = 9 – 12 + 3
P(3) = -3 + 3
P(3) = 0
Portanto, o polinômio P(x) = x
4 - 4x
3 + 4x
2 - 4x +3 é divisível por x – 3.
Para divisor igual a x – i, a = i.
P(i) = i
4 – 4 . i
3 + 4 . i
2 – 4 . i + 3
P(i) = 1 – 4 . (-i) + 4 . (-1) – 4i + 3
P(i) = 1
+ 4i – 4
– 4i + 3
P(i) = 1 – 4 + 3
P(i) = - 3 + 3
P(i) = 0
Portanto, o polinômio P(x) = x
4 - 4x
3 + 4x
2 - 4x +3 é divisível por x – i.
www.mundoeducacao.com.br
-
O Teorema De D'alembert
O teorema de D'AlembertMarcelo Rigonatto PolinômiosO teorema de D’Alembert é uma extensão do teorema do resto, que diz que o resto da divisão de um polinômio P(x) por um binômio do tipo x – a será R = P(a). D’Alembert...
-
O Teorema De D'alembert
Professor de Matemática no Colégio Estadual Dinah Gonçalves E Biologia na rede privada de Salvador-Bahia Professor Antonio Carlos carneiro Barroso email
[email protected] HTTP://ensinodematemtica.blogspot.com e HTTP://accbarroso60.wordpress.comhttp://accbarrosogestar.blogspot.com.br...
-
Teorema De D’alembert
O teorema de D’Alembert é uma consequência imediata do teorema do resto, que são voltados para a divisão de polinômio por binômio do tipo x – a. O teorema do resto diz que um polinômio G(x) dividido por um binômio x – a terá resto R igual...
-
Polinômios - Exercícios Resolvidos
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com...
-
Polinômios
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com...
Matemática