Matemática
Área de uma região triangular através do determinante
Bem, sabemos que os elementos que fundamentam a geometria analítica são os pontos e suas coordenadas, já que através destes podemos calcular distâncias, coeficientes angulares das retas e áreas de figuras planas.
Dentre os cálculos das áreas de figuras planas, existe uma expressão que determina a área de uma região triangular utilizando apenas as coordenadas dos vértices do triângulo.
Portanto, consideremos um triângulo com vértices de coordenadas quaisquer e assim vejamos como calcular a área desse triângulo apenas com as coordenadas dos seus vértices.
O parâmetro D é determinado pela matriz das coordenadas dos vértices do triângulo ABC.
Note que o parâmetro D é a mesma matriz determinante para verificar a condição de alinhamento de três pontos (ver Condição de alinhamento de três pontos).
Assim sendo, caso você verifique a área de um suposto triângulo e o determinante dê zero, saiba que na verdade esses três pontos não constituem um triângulo, pois estão alinhados (por isso a área é zero).
Uma observação importante em relação à expressão para o cálculo da área é quanto ao Parâmetro D estar em módulo, ou seja, usaremos o seu valor absoluto. Por se tratar de área, não devemos adotar um determinante negativo, pois isso resultará em uma área negativa e isso não existe.
Vejamos um exemplo para uma melhor compreensão:
“Determine a área da região triangular que tem como vértices os pontos A (4,0), B (0,0) e C (2,2)”.
Portanto, a área da região triangular do triângulo ABC é de 4 u.a (unidades de área).
Gabriel Alessandro de Oliveira
-
Triângulo
Na geometria plana encontramos a área de um triângulo fazendo uma relação com o valor de suas dimensões, e na trigonometria, com o valor do seno de um ângulo interno relacionado com os lados do triângulo é possível também encontrar a sua área....
-
Área De Um Triângulo Pela Geometria Analítica
Na geometria plana encontramos a área de um triângulo fazendo uma relação com o valor de suas dimensões, e na trigonometria, com o valor do seno de um ângulo interno relacionado com os lados do triângulo é possível também encontrar a sua área....
-
Geometria Analítica
1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(xa , ya) , B(xb , xc) e C(xc , yc) . A área S desse triângulo é dada por S = 1/2 . | D | onde ½ D½ é o módulo...
-
Área Do Quadrilatéro
A geometria analítica utiliza expressões algébricas para compreender o comportamento das formas geométricas planas. Através das propriedades da álgebra podemos fazer o estudo de retas, pontos, triângulos, circunferências e demais figuras geométricas....
-
Área Do Triângulo
Considere um triângulo no plano cartesiano de vértices A(xA, yA), B(xB, yB) e C(xC, yC). A área desse triângulo é dada por: Observe que a área é obtida multiplicando ½ pelo módulo do determinante das coordenadas dos vértices. Exemplo 1. Determine...
Matemática