Matemática
Equações trigonométricas
Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br
WWW.profantoniocarneiro.com
Equações Trigonométricas
INTRODUÇÃO
Quando encontramos função trigonométrica da incógnita ou função trigonométrica de alguma função da incógnita em pelo menos um dos membros de uma equação, dizemos que esta equação é trigonométrica.
Exemplos:
1) sen x + cos x = e sen 2x = cos2 x são equações trigonométricas. 2) x + ( tg 30º) . x2 e x + sen 60º = não são equações trigonométricas. Dizemos que r é uma raiz ou solução da equação trigonométrica f(x) = g(x) se r for elemento do domínio de f e g e se f(r) = g(r) for verdadeira.
Na equação sen x - sen =0, por exemplo, os números são algumas de suas raízes e os números não o são. O conjunto S de todas as raízes da equação é o seu conjunto solução ou conjunto verdade.
Quase todas as equações trigonométricas, quando convenientemente tratadas e transformadas, podem ser reduzidas a pelo menos uma das três equações seguintes:
sen x = sen a | cos x = cos a | tg x = tg a |
Estas são as equações trigonométricas elementares ou equações trigonométricas fundamentais.
RESOLUÇÃO DA 1ª EQUAÇÃO FUNDAMENTAL
Ela baseia-se no fato de que, se dois arcos têm o mesmo seno, então eles são côngruos ou suplementares.
Logo, podemos escrever que:
sen x = sen a |
O conjunto solução dessa equação será, portanto: Logo, podemos escrever que:
O conjunto solução dessa equação será, portanto: RESOLUÇÃO DA 3ª EQUAÇÃO FUNDAMENTAL Ela baseia-se no fato de que, se dois arcos têm a mesma tangente, então eles são côngruos ou têm suas extremidades simétricas em relação ao centro do ciclo trigonométrico.Logo, podemos escrever que:
O conjunto solução dessa equação será, portanto: www.somatematica.com.br
-
Equações Do Tipo Cos X = A
As equações trigonométricas são igualdades que envolvem funções trigonométricas de arcos desconhecidos. A resolução dessas equações consiste num processo único, que utiliza técnicas de redução a equações mais simples. Vamos abordar os...
-
Equação De 2º Grau Incompleta
Uma equação produto é caracterizada pelo produto de dois polinômios. Às vezes a resolução deste tipo de equação exige a utilização dos processos de fatoração. Veja alguns exemplos de equações produtos: 3x * (x2 – 16) = 0 (2x – 3) *...
-
Equação Do Segundo Grau
Equação do Segundo Grau - Parte I Definimos equação do segundo grau na incógnita x a toda equação que pode ser escrita na forma reduzida : ax2 + bx + c = 0 onde a, b e c são números reais e onde a é obrigatoriamente diferente de zero. Dessa...
-
Equação Do Segundo Grau
Definimos equação do segundo grau na incógnita x a toda equação que pode ser escrita na forma reduzida : ax2 + bx + c = 0 onde a, b e c são números reais e onde a é obrigatoriamente diferente de zero. Dessa forma : a é o coeficiente de x2 ,...
-
Equação De 1º Grau
Equação do 1º grau Equação é qualquer igualdade que só é satisfeita para alguns valores dos seus domínios. Ex: 2x – 5 = 3 » o número desconhecido x recebe o nome de incógnita De princípio, sem conhecer o valor da incógnita x, não podemos...
Matemática