Função 2º grau
Matemática

Função 2º grau


Uma função para ser do 2º grau precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela fórmula f(x) = ax2 + bx + c, sendo que a, b e c são números reais com a diferente de zero. Concluímos que a condição para que uma função seja do 2º grau é que o valor de a, da forma geral, não pode ser igual a zero.

Então, podemos dizer que a definição de função do 2º grau é: f: R→ R definida por f(x) = ax2 + bx + c, com a Є R* e b e c Є R.

Numa função do segundo grau, os valores de b e c podem ser iguais a zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta.

Veja alguns exemplos de Função do 2º grau:

f(x) = 5x2 – 2x + 8; a = 5, b = – 2 e c = 8 (Completa)

f(x) = x2 – 2x; a = 1, b = – 2 e c = 0 (Incompleta)

f(x) = – x2; a = –1, b = 0 e c = 0 (Incompleta)

Toda função do 2º grau também terá domínio, imagem e contradomínio.

Exemplo 1

A função do 2º grau f(x) = – x2 + x – 2, pode ser representada por y = – x2 + x – 2. Para acharmos o seu domínio e contradomínio, devemos primeiro estipular alguns valores para x. Vamos dizer que x = –3; –2; –1; 0; 1; 2. Para cada valor de x teremos um valor em y, veja:

x = – 3
y = – (–3)2 + (–3) – 2
y = –9 – 3 – 2
y = – 12 – 2
y = – 14

x = – 2
y = –( – 2)2 + (– 2) – 2
y = – 4 – 2 – 2
y = – 8

x = –1
y = – (–1)2 + (–1) – 2
y = – 1 – 1 – 2
y = – 2 – 2
y = – 4

x = 0
y = 02 + 0 – 2
y = – 2

x = 1
y = – 12 + 1 – 2
y = – 1 + 1 – 2
y = – 2


x = 2
y = – 22 + 2 – 2
y = – 4 + 2 – 2
y = – 4

Exemplo 2

Dada a função y = 2x2 + x + 3, determine o conjunto imagem referente aos domínios –2, –1, 0, 1, 2, 3, 4.

x = –2
y = 2*(–2)2 + (–2) + 3
y = 2*4 – 2 + 3
y = 8 – 2 + 3
y = 9

x = –1
y = 2*(–1)2 + (–1) + 3
y = 2 – 1 + 3
y = 4

x = 0
y = 2*02 + 0 + 3
y = 3

x = 1
y = 2*12 + 1 + 3
y = 2 + 1 + 3
y = 6

x = 2
y = 2*22 + 2 + 3
y = 8 + 2 + 3
y = 13

x = 3
y = 2*32 + 3 + 3
y = 18 + 3 + 3
y = 24

x = 4
y = 2*42 + 4 + 3
y = 32 + 4 + 3
y = 39

Exemplo 3

Com relação à função f(x) = 3x2 – 5x + m2 – 9, sabe-se que f(0) = 0. Calcule o valor de m.

f(0) = 0, isso significa que x = 0 e y = 0. A função f(x) = 3x2 – 5x + m2 – 9 pode ser escrita assim: y = 3x2 – 5x + m2 – 9, agora basta fazer as substituições:

f(x) = 3x2 – 5x + m2 – 9
f(0) = 3 * 02 – 5 * 0 + m2 – 9
0 = m2 – 9
m2 = 9
m = √9
m = – 3 ou + 3




- Função Do 2º Grau
Professor de Matemática Antonio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] HTTP://ensinodematemtica.blogspot.comhttp://accbarrosogestar.blogspot.com.br Uma função para ser do 2º grau precisa...

- Propriedades De Uma Função
As funções, independentes do grau que ela seja, são caracterizadas conforme a ligação entre os elementos dos conjuntos onde é feita a relação. Uma função A →B pode ser: sobrejetora, injetora, e bijetora. Para identificarmos essas características...

- Função Do 2º Grau
Professor de Matemática Antonio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] HTTP://ensinodematemtica.blogspot.comhttp://accbarrosogestar.blogspot.com.br  WWW.profantoniocarneiro.comUma função...

- Função Do 1º Grau
Uma função do 1º grau pode ser chamada de função afim. Pra que uma função seja considerada afim ela terá que assumir certas características, como: Toda função do 1º grau deve ser dos reais para os reais, definida pela fórmula f(x) = ax +...

- Função De 1º Grau
Consideremos x e y duas variáveis, sendo uma dependente da outra, isto é, para cada valor atribuído a x corresponde um valor para y. Definimos essa dependência como função, nesse caso, y está em função de x. O conjunto de valores conferidos a...



Matemática








.