Integral indefinida do produto de cossenos de monômios de coeficientes angulares diferentes
Matemática

Integral indefinida do produto de cossenos de monômios de coeficientes angulares diferentes


Neste artigo, veremos como encontrar uma fórmula para calcular a integral do produto de dois cossenos, cujos argumentos são monômios.



Vamos demonstrar que:
\begin{equation}
\int \cos(ax) \cos(bx)dx = \frac{\text{sen}[(a-b)x]}{2(a-b)} + \frac{\text{sen}[(a+b)x]}{2(a+b)}
\end{equation}
onde $a$ e $b$ são constantes, tal que $a$ e $b$ $\in \mathbb{R}$ e $a \neq |b|$.

Demonstração:

Seja a integral:
\begin{equation}
I=\int \cos(ax) \cos(bx)dx
\end{equation}
Das fórmulas de adição e subtração de arcos, obtemos uma identidade trigonométrica que transforma um produto de cossenos em uma soma:
\begin{equation}
\cos(m+n) = \cos(m)\cos(n) - \text{sen}(m)\text{sen}(n)
\end{equation}
e
\begin{equation}
\cos(m-n) = \cos(m)\cos(n) + \text{sen}(m)\text{sen}(n)
\end{equation}
Somando $(3)$ e $(4)$, obtemos:
\begin{equation}
\cos(m-n)+\cos(m+n)= 2\cos(m)\cos(n)
\end{equation}
O que nos leva a:
\begin{equation}
\cos(m)\cos(n) = \frac{1}{2} \cos(m-n) + \frac{1}{2} \cos(m+n)
\end{equation}
Fazendo $m=ax$ e $n=bx$, temos que:
\begin{equation}
\cos(ax)\cos(bx) = \frac{1}{2} \cos[(a-b)x] + \frac{1}{2} \cos[(a+b)x]
\end{equation}
Substituindo na integral $(2)$, obtemos:
\begin{equation}
I = \frac{1}{2} \int \left[ \cos[(a-b)x] + \cos[(a+b)x] \right] dx
\end{equation}
Integrando termo a termo:
\begin{equation}
I = \frac{1}{2} \int \cos[(a-b)x] dx + \frac{1}{2} \int \cos[(a+b)x] dx
\end{equation}
Para o integrando $\cos[(a-b)x]$, fazemos a substituição $u=(a-b)x$. Assim, $du=(a-b)dx$ e $\displaystyle dx=\frac{du}{a-b}$. E para o integrando $cos[(a+b)x]$, fazemos a substituição $v=(a+b)x$. Assim $dv=(a+b)dx$ e $\displaystyle dx=\frac{dv}{a+b}$.

A integral fica:
\begin{equation}
I = \frac{1}{2(a-b)}\int \cos(u)du + \frac{1}{2(a+b)} \int \cos(v)dv
\end{equation}
A integral de $\cos(\theta) = \text{sen}(\theta)$. Assim:
\begin{gather}
I = \frac{1}{2(a-b)} \cdot \text{sen}(u) + \frac{1}{2(a+b)} \text{sen}(v) +C\\

I = \frac{\text{sen}[(a-b)x]}{2(a-b)} + \frac{\text{sen}[(a+b)x]}{2(a+b)} + C
\end{gather}

Veja mais:

Integral indefinida do produto de senos de monômios de coeficientes angulares diferentes
Método de integração por substituição
Adição e subtração de arcos

Imprimir




- Resolução Da Integral $\displaystyle \int \frac{1}{x^2+a^2}dx$
Nesta postagem, vamos provar que: \begin{equation*} \int \frac{1}{x^2+a^2}\ dx = \frac{1}{a}\text{arctg}\left(\frac{x}{a}\right) + C \end{equation*} onde $a$ é uma constante, tal que $a \in \mathbb{R}^\ast$, sendo $x^2 + a^2 \neq 0$. Seja a integral:...

- Resolução Da Integral $\displaystyle \int \text{sen}^2 (ax)dx$
Nesta postagem, vamos demonstrar que: \begin{equation*} \int \text{sen}^2(ax)dx = \frac{x}{2} - \frac{\text{sen}(2ax)}{4a} + C \end{equation*} onde $a \in \mathbb{R}$ e $a \neq 0$. Seja a integral: \begin{equation*} I = \int \text{sen}^2(ax)dx \end{equation*}...

- Resolução Da Integral $\int \frac{x^2}{(4-x^2)^{3/2}}dx$
Li em um livro, talvez no do Simmons ou do Foulis, que integrar é uma arte. E é verdade. Quanto mais resolvo, mais percebo que não basta apenas o trivial. Esta integral foi enviada por um leitor por e-mail. Só consegui resolvê-la com uma ajuda da...

- Integral Indefinida Do Produto De Senos De Monômios De Coeficientes Angulares Diferentes
Neste artigo, veremos como encontrar uma fórmula para calcular a integral do produto de dois senos, cujos argumentos são monômios. Vamos demonstrar que: \begin{equation*} \int \text{sen}(ax) \cdot \text{sen}(bx)\ dx=\frac{\text{sen} [(a-b) x]}{2 (a-b)}...

- Resolução Da Integral $ \int \text{sen}(3x) \text{sen}(5x)dx$
Para a resolução desta integral, usaremos a técnica de integração por substituição e usaremos uma identidade trigonométrica que transforma produto de senos em uma subtração de cossenos. Seja a integral: \begin{equation} I = \int \text{sen}(3x)...



Matemática








.