Matemática
Logaritmos
Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br
WWW.profantoniocarneiro.com
Os logaritmos foram criados no intuito de facilitar os cálculos envolvendo números muito grandes ou muito pequenos. Os logaritmos reduzem esses números a algumas bases, a mais utilizada é a base decimal. As propriedades operatórias dos logaritmos possuem o objetivo de transformar multiplicações em somas, divisões em subtrações, potenciações em multiplicações e radiciações em divisões. Essas transformações facilitam os cálculos mais extensos.
Logaritmo de um produto
Considerando a, b e c números reais positivos e a ≠ 1, temos a seguinte propriedade:
loga(b*c) = logab + logac
Exemplo 1
Dados log2 = 0,301 e log3 = 0,477, determine o log12.
log12 → log12 = log(2 * 2 * 3) → log12 = log2 + log2 + log3 → log12 = 0,301 + 0,301 + 0,477 → log 12 = 1,079
Exemplo 2
Determine o valor de log2(8*32).
log2(8*32) = log28 + log232 = 3 + 5 = 8
Logaritmo de um quociente
Considerando a, b e c números reais positivos e a ≠ 1, temos a seguinte propriedade:
loga(b/c) = logab – logac
Exemplo 3
Sabendo que log30 = 1,477 e log5 = 0,699, determine log6.
log6 = (30/5) = log30 – log5 = 1,477 – 0,699 = 0,778
Exemplo 4
log3(6561/81) = log36561 – log381 = 8 – 4 = 5
Logaritmo de uma potência
Considerando a e b números reais positivos, com a ≠ 1, e m um número real, temos a seguinte propriedade:
logabm = m * logab
Exemplo 5
Sabendo que log 2 = 0,3010, calcule o valor de log 64.
log 64 = log 26 = 6 * log 2 = 6 * 0,3010 = 1,806
Exemplo 6
Dado log 2x = 2,4 e log 2 = 0,3, calcule x.
log 2x = 2,4 → x*log 2 = 2,4 → x * 0,3 = 2,4 → x = 2,4/0,3 → x = 8
Mudança de base
Para passarmos logab, com a e b positivos e a ≠ 1, para a base c, com c > 0 e c ≠ 1, utilizamos a seguinte expressão:
logab = logcb/ logca, com logca ≠ 0
Exemplo 7
Passando log49 para a base 2.
log49 = log29 / log24 = log29 / 2
Exemplo 8
Sabendo que log 4 = 0,60 e log 5 = 0,70, calcule log54.
log54 = log4 / log5 = 0,60 / 0,70 → log54 = 0,86
Os logaritmos criados por John Napier e Jobst Burgi, e posteriormente adaptados por Henry Briggs, possuem a seguinte lei de formação:
logab = x, onde:
a = base do logaritmo
b = logaritmando
x = logaritmo
O logaritmo de um número b em uma base a é o expoente x que se deve aplicar à base a para se ter o número b. Dessa forma:
logab = x ↔ ax = b
Exemplos:
log39 ↔ 32 = 9
log10100 ↔ 102 = 100
log216 ↔ 24 = 16
log981 ↔ 92 = 81
A partir dessa definição podemos apresentar algumas definições que auxiliarão no desenvolvimento de algumas situações envolvendo logaritmo. Veja:
O logaritmo do número 1 em qualquer base sempre será igual a 0.
loga1 = 0, pois a0 = 1
O logaritmo de qualquer número a na própria base a será igual a 1.
logaa = 1, pois a1 = a
O logaritmo de uma potência da base é o expoente, em qualquer base.
logaam = m, pois m * logaa = m * 1 = m
A potência de base a e expoente logab é igual a b.
alogab = b, pois logab = x → ax = b
Dois logaritmos são iguais, quando seus logaritmandos forem iguais.
logab = logac ↔ b = c
Exemplos
Aplicar a definição de logaritmo para calcular o valor de x em cada caso:
a) log327 = x → 3x = 27 → x = 3
b) log81x = 3/4 → x = 813/4 → x = (34)3/4 → x = 312/4 → x = 33 → x = 27
c) log4√2 = x → 4x = √2 → 22x = √2 → 22x = 21/2 → 2x = 1/2 → x = 1/4
d) logx8 = 2 → x2 = 8 → √x = √8 → x = 2√2
e) log4(2x – 1) = 1/2 → 2x – 1 = 41/2 → 2x – 1 = √4 → 2x – 1 = 2 → 2x = 3 → x = 3/2
f) log1818 = x → 18x = 18 → x = 1
g) logx1024 = 2 → x2 = 1024 → √x² = √1024 → x = 32
h) log40,25 = x → 4x = 0,25 → 4x = 25/100 → 4x = 1/4 → 4x = 4–1 → x = –1
i) 16log25 = (24)log25 = (2log25)4 = 54 = 625
j) log0,01 = x → 10x = 0,01 → 10x = 1/100 → 10x = 10–2 → x = –2
Os logaritmos possuem várias aplicações na Matemática e em diversas áreas do conhecimento, como Física, Biologia, Química, Medicina, Geografia entre outras. Iremos através de exemplos demonstrar a utilização das técnicas de logaritmos na busca de resultados para as variadas situações em questão.
Exemplo 1 – Matemática Financeira
Uma pessoa aplicou a importância de R$ 500,00 numa instituição bancária que paga juros mensais de 3,5%, no regime de juros compostos. Quanto tempo após a aplicação o montante será de R$ 3 500,00?
Resolução:
Nos casos envolvendo a determinação do tempo e juros compostos, a utilização das técnicas de logaritmos é imprescindível.
Fórmula para o cálculo dos juros compostos: M = C * (1 + i)t. De acordo com a situação problema, temos:
M (montante) = 3500
C (capital) = 500
i (taxa) = 3,5% = 0,035
t = ?
M = C * (1 + i)t
3500 = 500 * (1 + 0,035)t
3500/500 = 1,035t
1,035t = 7
Aplicando logaritmo
log 1,035t = log 7
t * log 1,035 = log 7 (utilize tecla log da calculadora científica )
t * 0,0149 = 0,8451
t = 0,8451 / 0,0149
t = 56,7
O montante de R$ 3 500,00 será originado após 56 meses de aplicação.
Exemplo 2 – Geografia
Em uma determinada cidade, a taxa de crescimento populacional é de 3% ao ano, aproximadamente. Em quantos anos a população desta cidade irá dobrar, se a taxa de crescimento continuar a mesma?
População do ano-base = P0
População após um ano = P0 * (1,03) = P1
População após dois anos = P0 * (1,03)2= P2
População após x anos = P0 * (1,03)x = Px
Vamos supor que a população dobrará em relação ao ano-base após x anos, sendo assim, temos:
Px = 2*P0
P0 * (1,03)x = 2 * P0
1,03x = 2
Aplicando logaritmo
log 1,03x = log 2
x * log 1,03 = log2
x * 0,0128 = 0,3010
x = 0,3010 / 0,0128
x = 23,5
A população dobrará em aproximadamente 23,5 anos.
Exemplo 3 – Química
Determine o tempo que leva para que 1000 g de certa substância radioativa, que se desintegra a taxa de 2% ao ano, se reduza a 200 g. Utilize a seguinte expressão:
Q = Q0 * e–rt, em que Q é a massa da substância, r é a taxa e t é o tempo em anos.
Q = Q0 * e–rt
200 = 1000 * e–0,02t
200/1000 = e–0,02t
1/5 = e–0,02t (aplicando definição)
–0,02t = loge1/5
–0,02t = loge5–1
–0,02t = –loge5
–0,02t = –ln5 x(–1)
0,02t = ln5
t = ln5 / 0,02
t = 1,6094 / 0,02
t = 80,47
A substância levará 80,47 anos para se reduzir a 200 g.
fonte www.mundoeducacao.com.br
-
Logaritmos
Os logaritmos possuem várias aplicações na Matemática e em diversas áreas do conhecimento, como Física, Biologia, Química, Medicina, Geografia entre outras. Iremos através de exemplos demonstrar a utilização das técnicas de logaritmos na busca...
-
Logaritmos
Os logaritmos criados por John Napier e Jobst Burgi, e posteriormente adaptados por Henry Briggs, possuem a seguinte lei de formação: logab = x, onde: a = base do logaritmo b = logaritmando x = logaritmo O logaritmo de um número b em uma base a é...
-
Logaritmo
Os logaritmos foram criados no intuito de facilitar os cálculos envolvendo números muito grandes ou muito pequenos. Os logaritmos reduzem esses números a algumas bases, a mais utilizada é a base decimal. As propriedades operatórias dos logaritmos...
-
Logaritmo
Os logaritmos criados por John Napier e Jobst Burgi, e posteriormente adaptados por Henry Briggs, possuem a seguinte lei de formação: logab = x, onde: a = base do logaritmo b = logaritmando x = logaritmo O logaritmo de um número b em uma base a é...
-
Logaritmo
Os logaritmos possuem várias aplicações na Matemática e em diversas áreas do conhecimento, como Física, Biologia, Química, Medicina, Geografia entre outras. Iremos através de exemplos demonstrar a utilização das técnicas de logaritmos na busca...
Matemática