Matemática
Logaritmo
Os logaritmos criados por John Napier e Jobst Burgi, e posteriormente adaptados por Henry Briggs, possuem a seguinte lei de formação:
logab = x, onde:
a = base do logaritmo
b = logaritmando
x = logaritmo
O logaritmo de um número b em uma base a é o expoente x que se deve aplicar à base a para se ter o número b. Dessa forma:
logab = x ↔ ax = b
Exemplos:
log39 ↔ 32 = 9
log10100 ↔ 102 = 100
log216 ↔ 24 = 16
log981 ↔ 92 = 81
A partir dessa definição podemos apresentar algumas definições que auxiliarão no desenvolvimento de algumas situações envolvendo logaritmo. Veja:
O logaritmo do número 1 em qualquer base sempre será igual a 0.
loga1 = 0, pois a0 = 1
O logaritmo de qualquer número a na própria base a será igual a 1.
logaa = 1, pois a1 = a
O logaritmo de uma potência da base é o expoente, em qualquer base.
logaam = m, pois m * logaa = m * 1 = m
A potência de base a e expoente logab é igual a b.
alogab = b, pois logab = x → ax = b
Dois logaritmos são iguais, quando seus logaritmandos forem iguais.
logab = logac ↔ b = c
Exemplos
Aplicar a definição de logaritmo para calcular o valor de x em cada caso:
a) log327 = x → 3x = 27 → x = 3
b) log81x = 3/4 → x = 813/4 → x = (34)3/4 → x = 312/4 → x = 33 → x = 27
c) log4√2 = x → 4x = √2 → 22x = √2 → 22x = 21/2 → 2x = 1/2 → x = 1/4
d) logx8 = 2 → x2 = 8 → √x = √8 → x = 2√2
e) log4(2x – 1) = 1/2 → 2x – 1 = 41/2 → 2x – 1 = √4 → 2x – 1 = 2 → 2x = 3 → x = 3/2
f) log1818 = x → 18x = 18 → x = 1
g) logx1024 = 2 → x2 = 1024 → √x² = √1024 → x = 32
h) log40,25 = x → 4x = 0,25 → 4x = 25/100 → 4x = 1/4 → 4x = 4–1 → x = –1
i) 16log25 = (24)log25 = (2log25)4 = 54 = 625
j) log0,01 = x → 10x = 0,01 → 10x = 1/100 → 10x = 10–2 → x = –2
-
Logaritmo
DEFINIÇÃO Sejam a e b números reais positivos diferentes de zero e b1. Chama-se logaritmo de a na base b o expoente x tal que bx = a: logb a = x bx = az Na sentença logb a = x temos: a) a é o logaritmando; b) b é a base do logaritmo; c) x é o logaritmo...
-
Logaritmo
Teoria dos Logaritmos 1. DEFINIÇÃO Sejam a e b números reais positivos diferentes de zero e b1. Chama-se logaritmo de a na base b o expoente x tal que bx = a: logb a = x bx = az Na sentença logb a = x temos: a) a é o logaritmando; b) b é a base...
-
Equações Logaritmicas
Os logaritmos possuem várias aplicações na Matemática e em diversas áreas do conhecimento, como Física, Biologia, Química, Medicina, Geografia entre outras. Iremos através de exemplos demonstrar a utilização das técnicas de logaritmos na busca...
-
Logaritmos
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com...
-
Logaritmos
Os logaritmos criados por John Napier e Jobst Burgi, e posteriormente adaptados por Henry Briggs, possuem a seguinte lei de formação: logab = x, onde: a = base do logaritmo b = logaritmando x = logaritmo O logaritmo de um número b em uma base a é...
Matemática