Matemática
Relação e função
Se em uma relação de dois conjuntos A e B, todos os elementos x de A estiver relacionados com um elemento y de B, dizemos que essa relação é uma função bijetora. Toda função bijetora tem a sua forma inversa. Veja um exemplo de função bijetora e porque podemos escrever a sua forma inversa. Dada a função f(x) = 3x – 5, o diagrama abaixo relaciona o conjunto A com o B definido por essa função: Cada elemento x de A está relacionado com um elemento y de B, então essa função é bijetora e pode ser escrita da seguinte forma y = 3x – 5. Como é uma função bijetora podemos dizer que cada elemento y de B está associado a cada elemento x de A, veja como ficaria o diagrama: Essa nova função é chamada de função inversa e representada por f -1. Portanto, dizemos que uma função inversa de f: A → B será f -1: B → A. Se uma função f é definida por f (x) = 3x – 5 que pode ser representada por y = 3x – 5 a função inversa a ela f -1 será representada por: Para determinar a função inversa basta isolar o x: y = 3x – 5 y + 5 = 3x y + 5 = x 3 Agora, trocando y por x e vice versa temos: A função inversa de f (x) = 3x – 5 será f -1 = x + 5. 3 Exemplo 1: Dada a função f(x) = x + 2 a sua inversa será: 3 3 y = x + 2 → retirando o mmc dos lados da igualdade, teremos: 3 3 3y = x + 2 3 3 3y = x + 2 3y – 2 = x → trocando o x pelo y e o y pelo x, teremos: f -1 = 3x – 2 Exemplo 2: Dada a função y = 2x + 3, qual será a sua função inversa? 3x – 5 y = 2x + 3 → multiplicando cruzado. 3x – 5 y( 3x - 5) = 2x + 3 → aplicando a propriedade distributiva, temos: 3xy - 5y = 2x + 3 3xy – 2x = 3 + 5y → colocando x em evidência no 1º membro da igualdade, temos: x( 3y – 2) = 3 + 5y x = 3 + 5y → trocando o x pelo y e o y pelo x, teremos: 3y - 2 f -1 = 3 +5x 3x – 2
Por Danielle de Miranda
-
Função Inversa
Professor de Matemática Antonio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] HTTP://ensinodematemtica.blogspot.comhttp://accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com Dado um conjunto...
-
Função Inversa
O objetivo de uma função inversa é criar funções a partir de outras. Uma função somente será inversa se for bijetora, isto é, os pares ordenados da função f deverão pertencer à função inversa f –1 da seguinte maneira: (x,y) Є f –1...
-
Função Composta E Inversa
Função Composta Observando as funções f : x →y | y = x + 1 e g : y →z | z = y2, representadas por diagramas de setas, notamos que, em f, x leva a y e, em g, y leva a z: Mas há uma função que permite “ir direto” de X para Z, sem passar...
-
Tipos De Funções
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com ...
-
Funções, Inversa E Composta
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br www.accbarrosogestar.wordpress.com ...
Matemática