Tipos de Funções
Matemática

Tipos de Funções


Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email [email protected]
 www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br 
WWW.profantoniocarneiro.com         

As funções possuem algumas propriedades que as caracterizam f : A→B.

Função sobrejetora
Função injetora
Função bijetora
Função inversa


Função sobrejetora: uma função é sobrejetora se, e somente se, o seu conjunto imagem for especificadamente igual ao contradomínio, Im = B. Por exemplo, se temos uma função f : Z→Z definida por y = x +1 ela é sobrejetora, pois Im = Z.

Função injetora: uma função é injetora se os elementos distintos do domínio tiverem imagens distintas. Por exemplo, dada a função f : A→B, tal que f(x) = 3x.



Função bijetora: uma função é bijetora se ela é injetora e sobrejetora. Por exemplo, a função f : A→B, tal que f(x) = 5x + 4.
Note que ela é injetora, pois x1≠x2 implica em f(x1) ≠f(x2)
É sobrejetora, pois para cada elemento em B existe pelos menos um em A, tal que f(x)=y.

Função inversa: uma função será inversa se ela for bijetora. Se f : A→B é considerada bijetora então ela admite inversa f : B→A. Por exemplo, a função y = 3x-5 possui inversa y = (x+5)/3.






Podemos estabelecer a seguinte diagramação:

Note que a função possui relação de A→B e de B→A, então podemos dizer que ela é inversa.
Marcos Noé




- Relação E Função
Se em uma relação de dois conjuntos A e B, todos os elementos x de A estiver relacionados com um elemento y de B, dizemos que essa relação é uma função bijetora. Toda função bijetora tem a sua forma inversa. Veja um exemplo de função bijetora...

- Funções Injetoras,bijetoras E Sobrejetoras
Aplicação Como a variável x está sob radical de índice par e tambem no denominador da fração: Funções sobrejetora, injetores e bijetora 1.º Tipo - sobrejetora f é sobrejetora Im (f) = CD (f) A Função é sobrejetora se sua imagem for igual...

- Função Composta E Inversa
Função Composta Observando as funções f : x →y | y = x + 1 e g : y →z | z = y2, representadas por diagramas de setas, notamos que, em f, x leva a y e, em g, y leva a z: Mas há uma função que permite “ir direto” de X para Z, sem passar...

- Funções, Inversa E Composta
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br www.accbarrosogestar.wordpress.com        ...

- Propriedades De Uma Função
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br www.accbarrosogestar.wordpress.com ...



Matemática








.