Volume do cone
Matemática

Volume do cone


Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email [email protected]
 www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br 
WWW.profantoniocarneiro.com         

Volume do cone

Marcelo Rigonatto


Cones
O cone é um dos sólidos geométricos com bastante aplicação no cotidiano. Diversas embalagens, produtos e até reservatórios apresentam a forma de um cone circular reto. Em virtude da sua grande utilização, é necessário conhecer seus elementos e fórmulas para o cálculo de sua área e volume. Vejamos o que é necessário para obter o volume de um cone de revolução.

Considere um cone circular reto de altura h e raio r como mostra a figura.
Assim como na pirâmide, o volume do cone é dado em função da área de sua base e da altura h. Podemos pensar no cone como sendo uma pirâmide com uma das faces arredondadas. Logo, seu volume pode ser obtido fazendo:

Como a base do cone é uma circunferência de raio r, temos que:

Assim, a fórmula para o cálculo do volume do cone pode ser reescrita da seguinte forma:

Onde,

r → é a medida do raio da base
h → é a altura do cone
V → é o volume do cone

Observe que para obter o volume do cone não é necessário conhecer a medida da geratriz e a fórmula é semelhante à da pirâmide.

Vejamos alguns exemplos de aplicação da fórmula.

Exemplo 1. Calcule o volume de um cone circular reto de 13 cm de altura e raio da base medindo 6 cm. (Use π = 3,14)

Solução: Pelo enunciado do problema, temos que:
r = 6 cm
h = 13 cm
V = ?

Utilizando a fórmula do volume, obtemos:

Portanto, o cone apresenta um volume de 489,84 cm3.

Exemplo 2. Um reservatório de água possui a forma de um cone de revolução com 8 metros de profundidade. Sabendo que o diâmetro da base mede 4 metros, determine a capacidade, em litros, desse reservatório. (Use π = 3,14)

Solução:

Segundo o enunciado do problema, temos que:
h = 8 m (profundidade)
r = d/2 = 4/2 = 2 m

Determinar a capacidade é o mesmo que calcular o volume do reservatório. Assim, utilizando a fórmula do volume do cone, obtemos:

Como o problema deseja saber a capacidade do reservatório em litros, devemos lembrar da seguinte relação:

1 m3 = 1000 litros

Assim, a capacidade do reservatório será:

V = 33,49 ×1000 = 33490 litros




- Cone Autor Professor Antonio Carlos
Cone Consideremos um círculo de centro O e raio r, situado num plano, e um ponto V fora dele. Chama-se cone circular, ou cone, a reunião dos segmentos com uma extremidade em V e a outra em um ponto do círculo. a) o ponto V é o vértice do cone;...

- Cone
Ao olharmos ao nosso redor, nos deparamos com figuras geométricas de formas variadas, estudos são desenvolvidos no intuito de desvendar as propriedades de tais situações geométricas. Uma forma conhecida e muito utilizada é o cone, figura que iremos...

- Volume Do Cilindro
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.br  www.accbarrosogestar.wordpress.comwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com...

- Volume Do Cilindro
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com  ...

- Cone Autor Professor Antonio Carlos
Cone Consideremos um círculo de centro O e raio r, situado num plano, e um ponto V fora dele. Chama-se cone circular, ou cone, a reunião dos segmentos com uma extremidade em V e a outra em um ponto do círculo. a) o ponto V é o vértice do cone;...



Matemática








.