Matemática
Volume do cone
Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br
WWW.profantoniocarneiro.com
Volume do cone
Marcelo Rigonatto
Cones
O cone é um dos sólidos geométricos com bastante aplicação no cotidiano. Diversas embalagens, produtos e até reservatórios apresentam a forma de um cone circular reto. Em virtude da sua grande utilização, é necessário conhecer seus elementos e fórmulas para o cálculo de sua área e volume. Vejamos o que é necessário para obter o volume de um cone de revolução.
Considere um cone circular reto de altura h e raio r como mostra a figura.
Assim como na pirâmide, o volume do cone é dado em função da área de sua base e da altura h. Podemos pensar no cone como sendo uma pirâmide com uma das faces arredondadas. Logo, seu volume pode ser obtido fazendo:
Como a base do cone é uma circunferência de raio r, temos que:
Assim, a fórmula para o cálculo do volume do cone pode ser reescrita da seguinte forma:
Onde,
r → é a medida do raio da base
h → é a altura do cone
V → é o volume do cone
Observe que para obter o volume do cone não é necessário conhecer a medida da geratriz e a fórmula é semelhante à da pirâmide.
Vejamos alguns exemplos de aplicação da fórmula.
Exemplo 1. Calcule o volume de um cone circular reto de 13 cm de altura e raio da base medindo 6 cm. (Use π = 3,14)
Solução: Pelo enunciado do problema, temos que:
r = 6 cm
h = 13 cm
V = ?
Utilizando a fórmula do volume, obtemos:
Portanto, o cone apresenta um volume de 489,84 cm
3.
Exemplo 2. Um reservatório de água possui a forma de um cone de revolução com 8 metros de profundidade. Sabendo que o diâmetro da base mede 4 metros, determine a capacidade, em litros, desse reservatório. (Use π = 3,14)
Solução:
Segundo o enunciado do problema, temos que:
h = 8 m (profundidade)
r = d/2 = 4/2 = 2 m
Determinar a capacidade é o mesmo que calcular o volume do reservatório. Assim, utilizando a fórmula do volume do cone, obtemos:
Como o problema deseja saber a capacidade do reservatório em litros, devemos lembrar da seguinte relação:
1 m
3 = 1000 litros
Assim, a capacidade do reservatório será:
V = 33,49 ×1000 = 33490 litros
-
Cone Autor Professor Antonio Carlos
Cone Consideremos um círculo de centro O e raio r, situado num plano, e um ponto V fora dele. Chama-se cone circular, ou cone, a reunião dos segmentos com uma extremidade em V e a outra em um ponto do círculo. a) o ponto V é o vértice do cone;...
-
Cone
Ao olharmos ao nosso redor, nos deparamos com figuras geométricas de formas variadas, estudos são desenvolvidos no intuito de desvendar as propriedades de tais situações geométricas. Uma forma conhecida e muito utilizada é o cone, figura que iremos...
-
Volume Do Cilindro
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.br www.accbarrosogestar.wordpress.comwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com...
-
Volume Do Cilindro
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com ...
-
Cone Autor Professor Antonio Carlos
Cone Consideremos um círculo de centro O e raio r, situado num plano, e um ponto V fora dele. Chama-se cone circular, ou cone, a reunião dos segmentos com uma extremidade em V e a outra em um ponto do círculo. a) o ponto V é o vértice do cone;...
Matemática