A Influência da calculadora na resolução de problemas
Matemática

A Influência da calculadora na resolução de problemas


A INFLUÊNCIA DA CALCULADORA NA RESOLUÇÃO DE PROBLEMAS
A calculadora, uma das ferramentas que o homem desenvolveu para atender as suas necessidades de fazer cálculos, tem sua utilidade reconhecida, há muito tempo, fora da sala de aula.
Entretanto, ainda hoje seu uso escolar estar cercado de duvidas e preconceitos infundados. Este artigo apresenta uma pesquisa, realizada em 2000 em uma escola da rede pública estadual de Pernambuco, que visavam investigar a influência da calculadora na sala de aula de matemática na resolução de problemas matemáticos abertos. Seu objetivo foi observar como os alunos modificavam seus procedimentos quando passavam a usar a calculadora nessa resolução. Os resultados mostram que a calculadora pode servir para agilizar a resolução e, principalmente potencializar o calculo mental.
A mão do homem foi a primeira máquina de calcular de todos os tempos. Foram os dedos das mãos e dos pés os primeiros instrumentos que o homem primitivo utilizou para atender a diferentes necessidades como a de controlar a quantidade de animais dos rebanhos utilizados em seu sustento.
A origem da civilização, com o conseqüente desenvolvimento do comércio, fez com que o homem criasse instrumentos cada vez mais sofisticados para a contagem dos objetos, como por exemplo, os diversos tipos de ábaco, as tabelas e réguas de calculo. A calculadora deve ser entendida como uma das etapas mais avançadas de todo esse processo de desenvolvimento.
Atualmente, já não faz mais sentido afirmar que as calculadoras devem ser evitadas na sala de aula de matemática porque os alunos não iriam mais raciocinar nem se interessar em aprender a tabuada. Muitos deles têm acesso a essa maquina desde muito cedo.
O uso da calculadora, para resolver cálculos trabalhosos, já era defendido na década de 60. Entretanto, ainda hoje discutimos, na escola pública, se devemos ou não usá-la, enquanto nas escolas particulares, onde estudam as camadas da sociedade mais favorecidas economicamente, já são usados computadores há algum tempo.

A RESOLUÇÃO DE PROBLEMAS MATEMÁTICOS COM O USO DA CALCULADORA
Para explorarmos os diferentes quadros na resolução de um problema, é importante que o professor elabore problemas diferentes daqueles usuais ou fechados nos termos de Medeiros (1999). Estes últimos, os problemas padrão ou problemas clássicos usualmente trabalhados em sala de aula de matemática, limitam a criatividade do aluno, porque tem certas características que podem gerar verdadeiras regras de contrato didático.
Entre as características desses problemas fechados está o fato de poderem ser resolvidos pela aplicação de um ou mais algoritmo, sendo preciso entrar a operação “certa” e realizá-la sem erro.
Algumas palavras como ganha, na adição, e perder na subtração, permitem ao aluno “adivinhar” a operação a fazer, possibilitando ao aluno transformar a linguagem usual em linguagem matemática. Além disso, o problema vem, em geral, sempre após a apresentação de determinado conteúdo ou algoritmo; todos os dados necessários à resolução do problema se encontram no enumerado, raramente se encontrando dados inúteis. Os números e as soluções são simples; o contexto do problema, em geral, nada tem a ver com a realidade cotidiana.
É sempre possível encontrar uma resposta para a questão matemática colocada por meio desses problemas, e o professor a conhece antecipadamente. Então, o aluno deve sempre encontrar uma solução que pode ser corrigida em caso de erro.
Essas características indicam, na maioria das vezes implicitamente, o que o professor e o aluno farão nessa atividade em que os problemas são tratados como uma coleção de exercícios variados. A tarefa do aluno é encontrar a solução esperada pelo professor e, para isso, ele precisa identificar a solução típica daquele problema. Esta situação pode levar o aluno a uma atitude de dependência, de memorização de conhecimentos.
O professor considera que o aluno no aprende por reprodução, isto é, basta resolver muito desses problemas semelhantes aquele recentemente feito para ele aprenda a resolver problemas com o conteúdo estudado.
Ao trabalhar com os problemas matemáticos em uma atividade diferente da usual, novas regras de contrato didático poderão ser estabelecidas. Nessa nova situação, os problemas serão preparados pelo professor e apresentado aos alunos de outra maneira. Os problemas abertos, que podem ser apresentados nessa nova atividade, podem ser uma alternativa para provocar rupturas no contrato didático.
Os problemas abertos se caracterizam por não terem vínculo com os últimos conteúdos estudados, evitando as regras de contrato didático já arraigado. Por estarem em um domínio conceitual familiar, permitem que os alunos tenham condições de resolvê-los. E, sobretudo, por possuírem enunciado curto, os problemas abertos podem permitir ao aluno conquistar as primeiras idéias em um novo estudo. Isso pode dar a impressão, bemvinda, de que o problema é de fácil solução, fazendo que o aluno se interesse em encontrá-la.
Um problema aberto também possui uma ou mais soluções. Além disso, ele pode ser trabalhado em grupo, evitando eventuais desencorajamentos, diminuindo o medo de não conseguir resolver, aumentando a chance de produção de conjecturas num intervalo de tempo razoável e possibilitando o surgimento de riscos conflitos sócio cognitivos. Esse conflito ocorre entre dois ou mais indivíduos, quando confrontam suas diferentes opiniões.
O objetivo visado na “resolução” do conflito é conduzir os protagonistas a um progresso comum em relação ao conhecimento em jogo na situação.
Um problema aberto tem por objetivo permitir que o aluno desenvolva um processo de resolução de problema que nós chamamos de “processo cientifico”, ou seja, nele o aluno desenvolverá a capacidade de tentar, supor, testar e provar o que for proposto como solução para o problema, implicando uma oposição aos problemas fechados.
A utilização de problemas não usuais ou abertos exigirá do aluno uma postura diferente da que sempre se observa quando resolvem os problemas fechados, porque o próprio enunciado do problema não permite que ele encontre a resposta como de costume. Nesse momento, a calculadora poderá ajudá-lo a concentra-se no processo de resolução ao invés de se preocupar com o calculo repetitivos.
Com a utilização da calculadora na resolução de problemas abertos, o aluno poderá compreender melhor o sentido dos problemas matemáticos escolares, uma vez que a falta de compreensão quanto ao significado da matemática estudada na escola é uma das grandes queixas dos alunos. “A questão essencial do ensino da matemática é então: como fazer para que os conhecimentos ensinados tenham sido para o aluno?”
A calculadora pode ajudar nessa compreensão da matemática, principalmente se ela for usada para descobrir fatos e propriedades. Mas não somente nisso.
O uso sensato das calculadoras contribui para a formação de indivíduos aptos a intervirem numa sociedade em que a tecnologia ocupa um espaço cada vez maior. Nesse cenário ganham espaço indivíduos com formação para a diversidade, preparados para investigar problemas novos, com capacidade para codificar e decodificar, se comunicar, tomar decisões, aprender por si. Todos esses atributos são necessários para a formação do homem de hoje, não importando se ele é marceneiro, metalúrgico, bancário ou empresário. Calculadoras e computadores são as ferramentas de nosso tempo.




- Questão 60 ? Processo De Promoção ? Qm ? Professor De Matemática ? See/sp ? 2.015
A seguir estão descritas algumas indicações para os processos de ensino e de aprendizagem de conceitos e procedimentos matemáticos. I. Para planejar suas atividades no início de um dado período (ano, semestre, bimestre, etc), o professor deve considerar...

- Atividade Com Calculadora: "alterar Dígito"
Objetivo Matemático: O aluno deve entender que em um número que contenha vários dígitos (ou algarismo), a posição do número (se é nas unidades, dezenas, centenas, milhares, ...) afeta o valor relativo (valor relativo ou valor posicional é o valor...

- Atividade Com Calculadora: "faça Sua Escolha"
Objetivo Matemático: O aluno deve pensar no cálculo antes de realizá-lo e identificar o método mais adequado e eficaz de resolvê-lo. Séries / Anos: Ensino Fundamental I e Ensino Fundamental II. Materiais: Calculadora e uma Folha de...

- Questão 21 ? Prova Do Estado ? (ofa) 2.011
O uso inteligente da calculadora em sala de aula constitui recurso didático importante. Em uma atividade de classe um professor pediu que seus alunos obtivessem o resto da divisão de 234983762 por 929827 com o auxílio de uma calculadora simples. Um...

- Pense Nisso? O Uso Da Calculadora Em Sala De Aula
Apesar do uso da calculadora ter se tornado comum no nosso cotidiano, a instituição escolar tem persistido, na melhor das hipóteses, em ignorar a sua existência, pois ainda chega a proibir o seu uso. Segundo Pucci: ?o problema mais sério aqui...



Matemática








.