Construção de um Pentágono Regular com Régua e Compasso (Parte 4) - Método de Hirano
Matemática

Construção de um Pentágono Regular com Régua e Compasso (Parte 4) - Método de Hirano


Esta é uma elegante construção do pentágono regular pelos métodos euclidianos, elaborado por Yoshifusa Hirano. A construção foi incluída num manuscrito Sanpo Jyojutu Kaigi, por Chorin Kawakita $(1840-1919)$ que escreveu:
"Hirano descobriu um método de construção do pentágono regular utilizando régua e compasso apenas. Descrevo esse método aqui por ser original, elementar e excelente."
A construção de Hirano é ilustrada pela imagem abaixo:


Construção Geométrica


$1)$ Descreva uma circunferência $C_1$ de centro $O$ com diâmetros horizontal $FG$ e vertical $DH$.

$2)$ Trace as mediatrizes dos segmentos $\overline{OF}$ e $\overline{OG}$ e marque-as como $P$ e $Q$, respectivamente.

$3)$ Com centro em $P$, descreva a circunferência $C_2$ de diâmetro $OF$ e com centro em $Q$ descreva a circunferência $C_3$ de diâmetro $OG$.

$4)$ Trace o segmento $\overline{HQ}$ e marque como $T$ a intersecção com a circunferência $C_3$.

$5)$  Com centro em $H$, descreva a circunferência $C_4$ de raio $HT$ e marque como $A$ e $B$ as intersecções com a circunferência $C_1$.

$6)$ O segmento $\overline{AB}$ fornece o comprimento dos lados do pentágono regular inscrito na circunferência $C_1$.


Demonstração


Consideremos a figura abaixo:




Seja $C_1$ a circunferência com raio unitário. Do triângulo $HOQ$, temos que:
\begin{equation}
\begin{matrix}
\overline{HQ}^2=\overline{OH}^2+\overline{OQ}^2\\
\overline{HQ}^2=1^2+\left(\frac{1}{2}\right)^2\\
\overline{HQ} ^2=1+\frac{1}{4}\\
\overline{HQ} ^2=\frac{5}{4}\\
\overline{HQ} =\frac{\sqrt{5}}{2}
\end{matrix}
\end{equation}
O segmento $\overline{QT}$ é o raio da circunferência $C_3$ e mede $1/2$. Assim:
\begin{equation}
\begin{matrix}
\overline{HT}=\overline{HQ}-\overline{QT}\\
\overline{HT}=\frac{\sqrt{5}}{2}-\frac{1}{2}=\frac{\sqrt{5}-1}{2}
\end{matrix}
\end{equation}
O triângulo $HBD$ é retângulo em $B$, de modo que:
\begin{equation}
\text{sen}(H\hat{D}B)=\frac{HB}{DH}=\frac{\sqrt{5}-1}{2}\cdot \frac{1}{2}=\frac{\sqrt{5}-1}{4}
\end{equation}
O ângulo cujo seno vale $\displaystyle \frac{\sqrt{5}-1}{4}$ é $18°$, logo o ângulo $H\hat{D}B=18°$. Por simetria, o ângulo $H\hat{D}A=18°$ e por conseguinte $A\hat{D}B=H\hat{O}B=36°$. E daqui obtemos que $A\hat{O}B=72°$, que é o ângulo central do pentágono.

Veja mais:


Construção de um Pentágono Regular com Régua e Compasso - Partes 1, 2, 3
Uma Demonstração para a Área do Pentágono Regular
Como Determinar o ângulo Interno de um Polígono Regular

Imprimir




- A Mediana De Euler
Leonhard Euler $(1707-1783)$ foi um dos maiores matemáticos (ou o maior) do século $XVIII$, pois sua obra é impressionante, pela quantidade e pela diversidade. Dentre algumas áreas em que Euler contribuiu, podemos citar a Álgebra, Teoria dos Números,...

- Os $10$ Problemas De Apolônio: Problema $1:[ppp]$ Problema Dos Três Pontos
Este é o mais simples dos problemas sobre tangências de Apolônio, que se resume em descrever uma circunferência que passa por três pontos dados não-colineares. Sejam três pontos não-colineares quaisquer $A$, $B$ e $C$ no plano. Para descrevermos...

- Retificação Da Circunferência (parte 7)
Hoje, 14 de março, (do inglês 3/14), comemora-se o dia internacional do $\pi$. Como forma de homenagear esta constante, que desde os egípcios antigos persegue os matemáticos, desenvolvi esta construção com apenas régua e compasso, onde podemos...

- Construção De Um Pentágono (quase) Regular Com Régua E Compasso - Parte $1$
Esta é a primeira construção de um pentágono usando régua e compasso. Apesar de tê-la encontrada como sendo um pentágono regular, mostrou-se, por fim, que é apenas uma ótima aproximação, tendo os ângulos internos diferenças menores que $1$...

- A Equação Da Elipse
Consideremos num plano, dois pontos $F_1$ e $F_2$ distantes um do outro por $2c>0$ e seja $a>c$. Definição $1$:Elipse é o lugar geométrico dos pontos de um plano onde a soma das distâncias a dois pontos fixos desse plano é constante. Dá-se...



Matemática








.