Função Logarítmica e Exponencial
Matemática

Função Logarítmica e Exponencial


Professor de Matemática Antonio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
Blog HTTP://ensinodematemtica.blogspot.com
http://accbarrosogestar.blogspot.com.br 
Função Logarítmica e Exponencial - Exercícios resolvidos

01. (U. E. FEIRA DE SANTANA - BA) O produto das soluções da equação (43 - x)2 - x = 1 é:



a) 0

b) 1

c) 4

d) 5

e) 6



RESPOSTA: E



02. (PUCCAMP) Considere a sentença a2x + 3 > a8, na qual x é uma variável real e a é uma constante real positiva. Essa sentença é verdadeira se, por exemplo:



a) x = 3 e a = 1

b) x = -3 e a > 1

c) x = 3 e a < 1

d) x = -2 e a < 1

e) x = 2 e a > 1



RESPOSTA: D



03. As funções y = ax e y = bx com a > 0 e b > 0 e a b têm gráficos que se interceptam em:



a) nenhum ponto;

b) 2 pontos;

c) 4 pontos;

d) 1 ponto;

e) infinitos pontos.



RESPOSTA: D



04. (U. E. FEIRA DE SANTANA - BA) O gráfico da função real f(x) = x2 - 2:



a) intercepta o eixo dos x no ponto (1, 0);

b) intercepta o eixo dos x no ponto (0, 1);

c) intercepta o eixo dos x no ponto (2, 0);

d) intercepta o eixo dos x no ponto (0, -2);

e) não intercepta o eixo dos x.



RESPOSTA: A



05. (FIC / FACEM) A produção de uma indústria vem diminuindo ano a ano. Num certo ano, ela produziu mil unidades de seu principal produto. A partir daí, a produção anual passou a seguir a lei y = 1000 . (0,9)x. O número de unidades produzidas no segundo ano desse período recessivo foi de:



a) 900

b) 1000

c) 180

d) 810

e) 90



RESPOSTA: D



06. (U. E. LONDRINA) Supondo que exista, o logaritmo de a na base b é:



a) o número ao qual se eleva a para se obter b.

b) o número ao qual se eleva b para se obter a.

c) a potência de base b e expoente a.

d) a potência de base a e expoente b.

e) a potência de base 10 e expoente a.



RESPOSTA: B



07. (PUC) Assinale a propriedade válida sempre:



a) log (a . b) = log a . log b

b) log (a + b) = log a + log b

c) log m . a = m . log a

d) log am = log m . a

e) log am = m . log a

(Supor válidas as condições de existências dos logaritmos)



RESPOSTA: E



08. (CESGRANRIO) Se log10123 = 2,09, o valor de log101,23 é:



a) 0,0209

b) 0,09

c) 0,209

d) 1,09

e) 1,209



RESPOSTA: B



09. Os valores de x que satisfazem log x + log (x - 5) = log 36 são:



a) 9 e -4

b) 9 e 4

c) -4

d) 9

e) 5 e -4



RESPOSTA: D



10. (UERJ) Em uma calculadora científica de 12 dígitos quando se aperta a tecla log, aparece no visor o logaritmo decimal do número que estava no visor. Se a operação não for possível, aparece no visor a palavra ERRO.

Depois de digitar 42 bilhões, o número de vezes que se deve apertar a tecla log para que, no visor, apareça ERRO pela primeira vez é:



a) 2

b) 3

c) 4

d) 5

e) 6



RESPOSTA: D


www.colaweb.com




- Tipos Particulares De Funções
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br www.accbarrosogestar.wordpress.com ...

- Exercicios Resolvidos
Exercícios resolvidos 01. (VUNESP) Assinale a alternativa que indica o polinômio que possui os números 0 e 1 como raízes, sendo 0 uma raiz de multiplicidade 3: a) p(x) = x (x3 - 1) b) p(x) = x (x - 1)3 c) p(x) = x3 (x - 1) d) p(x) = (x3 - x) (x -...

- Logaritmo
Professor Antonio Carlos Carneiro Barroso http://accbarrosogestar.blogspot.com.br  www.accbarrosogestar.wordpress.com    extraido de www.colegioweb.com.br Teoria dos Logaritmos 1. DEFINIÇÃO Sejam a e b números reais positivos diferentes...

- Números Complexos - Exercícios Resolvidos
Números Complexos - Exercícios resolvidos 01. O produto (5 + 7i) (3 - 2i) vale: a) 1 + 11i b) 1 + 31i c) 29 + 11i d) 29 - 11i e) 29 + 31i RESPOSTA: C 02. Se f(z) = z2 - z + 1, então f(1 - i) é igual a: a) i b) -i + 1 c) i - 1 d) i + 1 e) -i RESPOSTA:...

- Logaritmo
Teoria dos Logaritmos 1. DEFINIÇÃO Sejam a e b números reais positivos diferentes de zero e b1. Chama-se logaritmo de a na base b o expoente x tal que bx = a: logb a = x bx = az Na sentença logb a = x temos: a) a é o logaritmando; b) b é a base...



Matemática








.