Limites
Matemática

Limites


Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email [email protected]
 www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br 
WWW.profantoniocarneiro.com        



Limites
Noção intuitiva de limite
Seja a função f(x)=2x+1. Vamos dar valores a x que se aproximem de 1, pela sua direita (valores maiores que 1) e pela esquerda (valores menores que 1) e calcular o valor correspondente de y:
x y = 2x + 1
1,5 4
1,3 3,6
1,1 3,2
1,05 3,1
1,02 3,04
1,01 3,02
x
y = 2x + 1
0,5 2
0,7 2,4
0,9 2,8
0,95 2,9
0,98 2,96
0,99 2,98
Notamos que à medida que x se aproxima de 1, y se aproxima de 3, ou seja, quando x tende para 1 (x 1), y tende para 3 (y 3), ou seja:
Observamos que quando x tende para 1, y tende para 3 e o limite da função é 3.
Esse é o estudo do comportamento de f(x) quando x tende para 1 (x 1). Nem é preciso que x assuma o valor 1. Se f(x) tende para 3 (f(x) 3), dizemos que o limite de f(x) quando x 1 é 3, embora possam ocorrer casos em que para x = 1 o valor de f(x) não seja 3.
De forma geral, escrevemos:

se, quando x se aproxima de a (x a), f(x) se aproxima de b (f(x)b).

Como x² + x - 2 = (x - 1)(x + 2), temos:

Podemos notar que quando x se aproxima de 1 (x1), f(x) se aproxima de 3, embora para x=1 tenhamos f(x) = 2. o que ocorre é que procuramos o comportamento de y quando x1. E, no caso, y 3. Logo, o limite de f(x) é 3.
Escrevemos:

Se g: IR IR e g(x) = x + 2, g(x) = (x + 2) = 1 + 2 = 3, embora g(x)f(x) em x = 1. No entanto, ambas têm o mesmo limite.
Propriedades dos Limites
1ª)
O limite da soma é a soma dos limites.
O limite da diferença é a diferença dos limites.
Exemplo:

2ª)
O limite do produto é o produto dos limites.
Exemplo:

3ª)
O limite do quociente é o quociente dos limites desde que o denominador não seja zero.
Exemplo:

4ª)
Exemplo:

5ª)
Exemplo:

6ª)
Exemplo:

7ª)
Exemplo:

8ª)
Exemplo:
Limites Laterais
Se x se aproxima de a através de valores maiores que a ou pela sua direita, escrevemos:
Esse limite é chamado de limite lateral à direita de a.
Se x se aproxima de a através de valores menores que a ou pela sua esquerda, escrevemos:
Esse limite é chamado de limite lateral à esquerda de a.
O limite de f(x) para xa existe se, e somente se, os limites laterais à direita a esquerda são iguais, ou sejas:
Continuidade
Dizemos que uma função f(x) é contínua num ponto a do seu domínio se as seguintes condições são satisfeitas:
Propriedade das Funções contínuas
Se f(x) e g(x)são contínuas em x = a, então:




- Sobre A Definição Formal De Limite
O conceito de limite, embora usualmente seja estudado no nível superior, está presente em alguns pontos estudados no nível básico, como por exemplo no caso da dedução da fórmula que fornece a soma dos infinitos termos de uma PG.  O conceito...

- Limite De Uma Função
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail [email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br WWW.profantoniocarneiro.com        ...

- Limite
O Limite tem por objetivo estudar uma função à medida que o seu domínio se aproxima de determinado valor, dessa forma, analisamos o valor da imagem de acordo com o domínio. Por exemplo, a função tende a zero quando o domínio caminha sentido ao...

- Limites
     Consideremos a função real, de variável real, definida por .      Observando o gráfico da função, que esboçámos ao lado, conclui-se que:         Não existe .        ...

- Demonstração Da Derivada Da Função Exponencial
Neste artigo, veremos como encontrar a derivada da função exponencial. Para isso utilizaremos limites e o conceito de derivada. Vamos demonstrar que, se $f(x)=e^x$, então sua derivada será $f '(x)=e^x$. Demonstração:Primeiramente, vamos provar...



Matemática








.