Matemática
Progressões Geométricas
As Progressões Geométricas são formadas por uma sequência numérica, onde estes números são definidos (exceto o primeiro) utilizando a constante q, chamada de razão. O próximo número da P.G. é o número atual multiplicado por q. Exemplo:
(1, 2, 4, 8, 16, 32, 64, 128, 256, 512, …), onde a razão é 2
A razão pode ser qualquer número racional (positivos, negativos, frações). Para descobrir qual a razão de uma PG, basta escolher qualquer número da sequência, e dividir pelo número anterior.
Fórmula do termo geral
A sequinte fórmula pode ser utilizada para encontrar qualquer valor de uma sequência em progressão geométrica:
an = a1 . q(n – 1)
onde a é um termo, então a1 refere-se ao primeiro termo. No lugar de n colocamos o número do termo que queremos encontrar. Exemplo:
q = 2
a1 = 5
para descobrir, por exemplo, o termo a12, faremos:
a12 = 5 . 2 (12 – 1)
a12 = 5 . 211
a12 = 5 . 2048 = 10240
As PG’s podem ser divididas em quatro tipos, de acordo com o valor da razão:
Oscilante (q < 0)
Neste tipo de PG, a razão é negativa, o que fará com que a sequência númerica seja composta de números negativos e positivos, se intercalando.
(3,-6,12,-24,48,-96,192,-384,768,…), onde a razão é -2
Crescente (q > 0)
Na PG crescente, a razão é sempre positiva, e por isto a sequência será formada por números crescentes, como:
(1, 3, 9, 27, 81, …), onde a razão é 3
Constante
Nesta PG, a sequência numérica tem sempre os mesmos números, podendo ter a excessão do primeiro. Para isso, a razão deve ser sempre 0 ou 1:
(4, 0, 0,0,0,0,0,0,0, …) onde a razão é 0
(4, 4, 4, 4, 4, 4, 4, …) onde a razão é 1
Descrescente
As progressões geométricas decrescentes tem a razão sempre positiva e diferente de zero, e os números da sequência são sempre menores do que o número anterior:
(64, 32, 16, 8, 4, 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, ..) razão = 1/2
(-1, -3, -9, -27, -81, …) onde a razão é 3 (observe que na PG crescente temos um exemplo com a mesma razão, porém o número inicial aqui é negativo, alterando toda a sequência)
www.infoescola.com
-
Progressão Geométrica
É toda seqüência em que cada termo, a partir do segundo, é igual ao seu antecessor multiplicado por um número constante q (razão). Exemplos: a) (2, 4, 8, 16) 4 = 2.2 8 = 4.2 →a razão é 2. 16 = 8.2 b) (3, 9, 27, 81) 9 = 3.3 27 = 9.3 ...
-
Interpolação De Meios Geométricos
Marcelo Rigonatto ProgressõesAs progressões geométricas são sequências numéricas que apresentam uma característica em comum: cada elemento, a partir do segundo, é obtido realizando o produto entre o...
-
Progressão Geometrica
Progressão geométrica é uma seqüencia numérica que cresce ou decresce pelo produto por uma taxa constante. Nessa progressão, os seus termos a partir do segundo é igual ao produto do termo anterior por uma constante denominada razão q. Por exemplo:...
-
Sequências Pa
CLASSIFICAÇÃO Quanto à razão, as progressões aritméticas podem ser classificadas em: 1. Crescentes – São aquelas cuja razão é positiva. Exemplo: (4, 8, 12...) →r = 4 > 0 (positiva) 2. Decrescentes – São aquelas cuja razão é negativa....
-
Progressão Geométrica (p.g.)
Definição: uma sequência numérica é chamada de Progressão Geométrica (P.G.) se o quociente entre qualquer termo (a partir do 2º) e o termo antecessor for sempre o mesmo (constante). A essa constante...
Matemática