Matemática
Resolução da integral $\int \frac{1}{a-bx}dx$
Nesta postagem, vamos demonstrar que:
\begin{equation*}
\int \frac{1}{a-bx}dx = -\frac{\ln(a-bx)}{b}+C
\end{equation*}
onde $a$ e $b$ são constantes tais que $a$ e $b$ $\in \mathbb{R}$, sendo $a \neq bx$ e $b \neq 0$.
Seja a integral:
\begin{equation*}
I = \int \frac{1}{a-bx}dx
\end{equation*}
Fazemos a substituição $u = a-bx$. Assim, $du= - b\ dx$ e $\displaystyle dx = -\frac{du}{b}$:
\begin{equation*}
I = - \int \frac{1}{u} \cdot \frac{du}{b}\\
\ \\
I = -\frac{1}{b} \int \frac{1}{u}du
\end{equation*}
A integral de $\displaystyle \frac{1}{u}$ é $\ln(u)$. Assim:
\begin{equation*}
I = - \frac{1}{b} \ln(u)+C
\end{equation*}
Mas $u=a-bx$, logo:
\begin{equation*}
I = -\frac{1}{b} \ln(a-bx) + C\\
\ \\
I = - \frac{\ln(a-bx)}{b}+C
\end{equation*}
Veja mais:
Lista de resolução e integrais
Integração por substituição
Integração por partes
-
Resolução Da Integral $\displaystyle \int \frac{x^2+1}{x^2-1}dx$
Nesta postagem, veremos que: \begin{equation*} \int \frac{x^2+1}{x^2-1}dx = x+ \ln|x-1|- \ln|x+1| + C \end{equation*} onde $x \in \mathbb{R}$, sendo $x \neq \pm 1$. Seja a integral: \begin{equation*} I = \int \frac{x^2+1}{x^2-1}dx \end{equation*} Decompomos...
-
Resolução Da Integral $\displaystyle \int \frac{1}{ax+b}\ Dx$
Nesta postagem vermos que: \begin{equation*} \int \frac{1}{ax+b}\ dx = \frac{1}{a}\ln |ax+b| + C \end{equation*} onde $a$ e $b$ $\in \mathbb{R}$, sendo $a \neq 0$. [Família de funções integráveis do tipo $\displaystyle \frac{1}{ax+b}$] Seja a integral:...
-
Resolução Da Integral $\displaystyle \int \frac{1}{x^2+a^2}dx$
Nesta postagem, vamos provar que: \begin{equation*} \int \frac{1}{x^2+a^2}\ dx = \frac{1}{a}\text{arctg}\left(\frac{x}{a}\right) + C \end{equation*} onde $a$ é uma constante, tal que $a \in \mathbb{R}^\ast$, sendo $x^2 + a^2 \neq 0$. Seja a integral:...
-
Integral Indefinida Do Produto De Cossenos De Monômios De Coeficientes Angulares Diferentes
Neste artigo, veremos como encontrar uma fórmula para calcular a integral do produto de dois cossenos, cujos argumentos são monômios. Vamos demonstrar que: \begin{equation} \int \cos(ax) \cos(bx)dx = \frac{\text{sen}[(a-b)x]}{2(a-b)} + \frac{\text{sen}[(a+b)x]}{2(a+b)}...
-
Resolução Da Integral $\int \cos(x) \cos(2x)dx$
Para a resolução desta integral, usaremos a técnica de integração por substituição e usaremos uma identidade trigonométrica que transforma um produto de cossenos em soma. Seja a integral: \begin{equation} \int \cos(2x) \cos(x) dx \end{equation}...
Matemática