Matemática
Operações com números complexos na forma trigonométrica
Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
www.ensinodematemtica.blogspot.com.br
www.accbarrosogestar.blogspot.com.br
Operações com números complexos na forma trigonométrica
Marcelo Rigonatto
Forma trigonométrica
Sabemos que número complexo é um par ordenado de números reais z = (a, b). Todo número complexo do tipo z = (a, b) pode ser escrito na forma normal ou algébrica: z = a + bi. Representando esse número complexo no plano de Argand-Gauss e utilizando alguns recursos da trigonometria e o teorema de Pitágoras, podemos escrevê-lo na forma trigonométrica: z = |z|(cos θ + i.sen θ).
A forma trigonométrica é muito útil na realização das operações de multiplicação e divisão envolvendo números complexos, em razão da sua praticidade nos cálculos.
Multiplicação na forma trigonométrica.
Considere dois números complexos quaisquer, escritos na forma trigonométrica:
z
1 = |z
1 |∙(cosθ + i∙sen θ) e z
2 = |z
2 |(cos α+i∙sen α)
O produto entre z
1 e z
2 pode ser feito da seguinte forma:
z1 ∙ z2 = |z1 |∙|z2 |∙[cos(θ+α) +i∙sen (θ+α) ]Tal fato é garantido pelas relações:
sen(θ + α) = senθ ∙ cosα + senα∙cosθ
cos(θ + α) = cosθ ∙ cosα - senθ∙senα
Exemplo 1: Dados os números complexos z
1 = 6∙(cos30
o + i∙sen 30
o) e z
2 = 3∙(cos15
o + i∙sen 15
o), calcule o valor de z
1 ∙ z
2.
Solução: Utilizando a fórmula da multiplicação de números complexos na forma trigonométrica, temos que:
z
1 ∙ z
2 = 6∙3∙[cos(30
o + 15
o )+i∙sen (30
o + 15
o )]
z
1 ∙ z
2 = 18∙(cos45
o + i∙sen 45
o )
Solução: Utilizando a fórmula da multiplicação, obtemos:
Divisão na forma trigonométrica
Para realizar a divisão na forma trigonométrica também existe uma fórmula que facilita os cálculos.
Sejam z
1 = |z
1 |∙(cosθ + i∙sen θ) e z
2 = |z
2 |(cosα + i∙senα), dois números complexos quaisquer, o quociente entre z
1 e z
2 será dado por:
Exemplo 3: Dados z = 22∙(cos120
o + i∙sen 120
o) e c = 11∙(cos90
o +i∙sen 90
o), determine o valor de z/c.
Solução: Pela fórmula da divisão de complexos na forma trigonométrica, temos que:
-
Números Complexos
Adição: Sejam z1 = a + bi e z2 = c + di, a soma z1 + z2 é dada por: z1 + z2 = ( a + c ) + ( b + d ) iPropriedades da adição de complexosi) associativa: z1, z2, z3 , tem-se:...
-
Números Complexos
Operações com números complexos na forma algébricaMarcelo Rigonatto Representação gráfica de zNúmero complexo é um par ordenado de números reais (a, b). Assim, o conjunto dos números complexos é uma extensão do conjunto...
-
Potenciação De Números Complexos Na Forma Trigonométrica
Professor de Matemática e Biologia Antônio Carlos Carneiro BarrosoColégio Estadual Dinah Gonçalvesemail
[email protected] www.ensinodematemtica.blogspot.com.brwww.accbarrosogestar.blogspot.com.br www.accbarrosogestar.wordpress.com ...
-
Números Complexos
Como em qualquer conjunto numérico, no conjunto dos números complexos existe uma maneira específica de aplicar as operações (adição, subtração, multiplicação e divisão). Antes de aplicarmos as operações devemos saber que um número complexo...
-
Números Complexos
Introdução: Um pouco de HistóriaHouve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas do tipo: \begin{equation*} ax^2+bx+c=0 \end{equation*} Temos...
Matemática