A Soma de Gauss
Matemática

A Soma de Gauss



Uma história interessante do jovem Carl Friederich Gauss $(1777-1855)$ quando este tinha apenas $10$ anos é que em uma das aulas de aritmética, o professor pediu aos alunos que calculassem o valor da soma:
\begin{equation*}
S = 1 + 2 + 3 + \cdots + 99 + 100
\end{equation*}
Não levou muito tempo e Gauss escreveu a resposta em sua pequena lousa: $5050$. Seu professor não acreditou no que vira, enquanto seus colegas somavam termo a termo. Mais incrédulo ficou ao fim da aula quando verificou que a única resposta certa fora a de Gauss, que justificou assim seu procedimento:

“A soma de $1$ com $100$, de $2$ com $99$, de $3$ com $98$, e assim por diante, é sempre igual a $101$. Como na soma desejada o número $101$ aparece $50$ vezes, basta multiplicar $101$ por $50$ para obter $5050$”.

E isso Gauss fez em pouco tempo e sem dificuldades, um prenúncio das grandes contribuições do gênio que foi.

Consideremos a $P.A.$ finita de razão $r$:
\begin{equation*}
a_1+a_2+a_3+\cdots +a_{N-2}+a_{N-1}+a_N
\end{equation*}
A soma $S_N$ de seus $N$ termos pode ser escrita como:

onde:

$\bullet$ $a_1$ é o primeiro termo;
$\bullet$ $a_N$ é p enésimo termo;
$\bullet$ $N$ é o número de termos;
$\bullet$ $S_N$ é a soma dos $N$ termos.

Logo:
\begin{equation*}
S_N=(a_1+a_N)+(a_1+a_N)+\cdots + (a_1+a_N)
\end{equation*}
Como sempre somamos dois termos da $P.A.$ de $N$ termos, teremos $N/2$ parcela iguais a $(a_1+a_N)$, o que nos leva à fórmula da soma dos termos de uma $P.A.$ finita:
\begin{equation}
S_N=\frac{(a_1+a_N)N}{2}
\end{equation}

Exemplo $1$: Tomemos o problema que o professor passou a Gauss e seus colegas: Encontrar a soma dos números naturais de $1$ a $100$ utilizando a fórmula moderna.

Neste caso, precisamos somar os termos da sequência:
\begin{equation*}
S_N=1+2+3+\cdots +98+99+100
\end{equation*}
Observando a sequência acima, temos que $a_1=1$, $a_N=100$ e $N=100$. Aplicando na fórmula do termo geral obtida em $(1)$, obtemos:
\begin{equation*}
S_N=\frac{(a_1+a_N)N}{2}=\frac{(1+100)100}{2}=\frac{10100}{2}=5050
\end{equation*}
Que é a mesma soma obtida por Gauss.

Exemplo $2$: Calcular a soma dos primeiros $N$ números ímpares $(1, 3, 5, \cdots , 2N-1, \cdots )$, $N \in \mathbb{N^*}$.
\begin{equation*}
S_N=\frac{(a_1+a_N)N}{2}=\frac{(1+2N-1)N}{2}=\frac{2N^2}{2}=N^2
\end{equation*}
Portanto, a soma dos $N$ primeiros números ímpares é igual a $N^2$.

Vamos calcular a soma dos 50 primeiros números ímpares dessa sequência. O primeiro termo é $a_1=1$. Para descobrirmos o quinquagésimo termo da sequência, fazemos: $a_N=2N-1 \Rightarrow a_{50}=2\cdot 50 -1 = 99$. Assim:
\begin{equation*}
S_N=\frac{(a_1+a_N)N}{2}=\frac{(1+99)50}{2}=2500
\end{equation*}
Ou simplesmente fazemos:
\begin{equation*}
S_N=N^2=50^2=2500
\end{equation*}

Veja mais: 

Dirichlet e os Números Primos de uma Progressão Aritmética
Soma dos Termos de uma P.G. Finita
Soma dos Termos de uma P.G. Infinita

Imprimir




- Resolução Da Integral $\displaystyle \int \frac{x^2+1}{x^2-1}dx$
Nesta postagem, veremos que: \begin{equation*} \int \frac{x^2+1}{x^2-1}dx = x+ \ln|x-1|- \ln|x+1| + C \end{equation*} onde $x \in \mathbb{R}$, sendo $x \neq \pm 1$. Seja a integral: \begin{equation*} I = \int \frac{x^2+1}{x^2-1}dx \end{equation*} Decompomos...

- Resolução Da Integral $\int \frac{1}{a\ E^{bx}}dx$
Nesta postagem, vamos demonstrar que: \begin{equation*} \int \frac{1}{a\ e^{bx}}dx = -\frac{e^{-bx}}{ab}+C \end{equation*} onde $a$ e $b \in \mathbb{R}$ e $a$ e $b \neq 0$. Seja a integral: \begin{equation*} I = \int \frac{1}{a\ e^{bx}}dx = \int \frac{e^{-bx}}{a}...

- Resolução Da Integral $\int \frac{1}{a-bx}dx$
Nesta postagem, vamos demonstrar que: \begin{equation*} \int \frac{1}{a-bx}dx = -\frac{\ln(a-bx)}{b}+C \end{equation*} onde $a$ e $b$ são constantes tais que $a$ e $b$ $\in \mathbb{R}$, sendo $a \neq bx$ e $b \neq 0$. Seja a integral: \begin{equation*}...

- Integral Indefinida Do Produto De Cossenos De Monômios De Coeficientes Angulares Diferentes
Neste artigo, veremos como encontrar uma fórmula para calcular a integral do produto de dois cossenos, cujos argumentos são monômios. Vamos demonstrar que: \begin{equation} \int \cos(ax) \cos(bx)dx = \frac{\text{sen}[(a-b)x]}{2(a-b)} + \frac{\text{sen}[(a+b)x]}{2(a+b)}...

- Resolução Da Integral $\int \cos(x) \cos(2x)dx$
Para a resolução desta integral, usaremos a técnica de integração por substituição e usaremos uma identidade trigonométrica que transforma um produto de cossenos em soma. Seja a integral: \begin{equation} \int \cos(2x) \cos(x) dx \end{equation}...



Matemática








.