Método de Newton para Aproximação de Raiz Quadrada de um Número n
Matemática

Método de Newton para Aproximação de Raiz Quadrada de um Número n


Newton descobriu um método para aproximar os valores das raízes de uma equação numérica, aplicável tanto para equações algébricas como para equações transcendentes. A variante desse método, hoje conhecido como Método de Newton, diz o seguinte:

"Se f (x) = 0 tem apenas uma raiz no intervalo [a, b] e se nem f '(x) nem f "(x) se anulam nesse intervalo, escolhido x0 como aquele dos dois números a e b para o qual f (x) e f" (x) tem mesmo sinal, então:

clip_image002

situa-se mais perto da raiz do que x0.

Seja clip_image002[3] (Conjunto das funções com até a 2ª derivada contínua) no intervalo [a, b], a aproximação da raiz clip_image004[3], f (p) = 0, x é a aproximação de p, tal que clip_image006[5] e clip_image008[3], com clip_image010[3].

A derivada f '(x0) é a reta tangente da função no ponto x0. Se o ponto x0 está localizado nos pontos de inflexão, máximos ou mínimos, a derivada da função tende a zero e é por esse motivo que o Método de Newton não converge se f '(x0) tende a zero.


NOTA: O Método de Newton é excelente para calcular aproximações de raízes reais de funções reais, convergindo rapidamente. Por este motivo será estudado mais profundamente numa próxima oportunidade. No momento, iremos aplicá-lo somente para calcular aproximações de raízes quadradas de números reais.

Exemplo1: Aproximar √3 pelo Método de Newton, com precisão de ε = 1 x 10– 4. O erro E = |(ak)2 - n|.

Como queremos encontrar uma aproximação para √3, fazemos:

clip_image004

clip_image006

Logo:

clip_image008

clip_image010

A raiz quadrada de 3 está situada entre 1 e 2. Desta forma, tomaremos como uma aproximação inicial x0 = 1,5.

clip_image002[1]

clip_image012

clip_image014

clip_image016

clip_image018

clip_image020

Como E = |1,752 – 3| > 10– 4, continuamos as iterações:

clip_image022

clip_image024

clip_image026

clip_image028

clip_image030

Como E = |1,7321428572 – 3| > 104, continuamos as iterações:

clip_image032

clip_image034

clip_image036

clip_image038

clip_image002

Como E = |1,732050812 – 3| menor que 104 paramos as iterações e tomamos x3 como uma raiz aproximada √3.

Vimos como o algoritmo de Newton aproxima raízes, que melhoram a cada iteração. No entanto, o Método de Newton é muito mais eficaz quando se trata de raízes de funções.



Veja mais:

Método de Herão para aproximação de raiz quadrada
Método Babilônico para aproximação de raiz quadrada
Aproximação da raiz quadrada de um número n
Zeros Reais de Funções Reais





- Extraindo Uma Raiz Quadrada
Por que alguém iria querer encontrar a raiz quadrada de um número sem usar uma calculadora? Certamente, ninguém faria tal coisa, exceto em casos extremos no qual não se tenha a mão uma calculadora. Apresentamos um método simples (trabalhoso sim,...

- Mais Um Método Para Aproximar A Raiz Quadrada
A fórmula que apresentada logo abaixo é uma aproximação para raízes quadradas, mas se nos deparamos com um problema e não temos uma calculadora na mão, ou o nosso celular ficou sem bateria, podemos usá-la sem medo. Vejamos: Onde, Q é o quadrado...

- Zeros Reais De Funções Reais – O Método De Newton Raphson Resolvido No Excel
Introdução:Sabemos que para alguns tipos de funções existem fórmulas fechadas que levam às raízes em função dos coeficientes, como por exemplo, as equações polinomiais de segundo grau. No entanto, no caso de um polinômio de grau mais alto...

- Aproximação De Raiz Quadrada De Um Número N
Introdução Os Babilônios deram algumas aproximações interessantes de raízes quadradas de números não-quadrados perfeitos, tais como 17/12 para aproximar , 17/24 para . Talvez eles usassem a fórmula de aproximação: Uma aproximação notável...

- Método Babilônico Para Aproximação De Raiz Quadrada De Um Número N
Os Babilônios utilizavam um algoritmo para aproximar uma raiz quadrada de um número qualquer, da seguinte maneira: Dado um número n, para encontrar a raiz quadrada aproximada, assumimos uma aproximação inicial a0 e calculamos b0. Em seguida, utilizamos...



Matemática








.